```
        JOIDES PLANNING COMMITTIEE MEETING
ALTON JONES CAMPUS, UNIVERSITY OF RHODE ISLAND
    WEST KINGSTON, RHODE ISLAND
                        OCIOBER 8 - 10, 1985
```


DRAFT MINUTES

PCOM Members:
R. Iarson (Chaiman) - University of Rhode Island
H. Beiersdorf - Federal Republic of Germany

J-P. Cadet - France
S. Gartner - Texas A\&M University
C. Harrison (for J. Honnorez)-University of Miami
D. Hayes - Lamont-Doherty Geological Observatory
(R. Anderson replaced D. Hayes on 10 October)
D. Hussong - University of Hawaii
M. Kastner - Scripps Institution of Oceanography
S. Levi - Oregon State University
R. McDuff - University of Washington
P. Robinson - Canada
T. Shipley - University of Texas
A. Taira - Japan
D. Ross (for R. von Herzen) - Woods Hole Oceanographic Institution
aisons:
R. Anderson - ODP/L-DGO (Wireline Logging Services)
G. Brass - National Science Foundation
J. Clotworthy - Joint Oceanographic Institutions, Inc.
L. Garrison - ODP/TAMU (Science Operator)

Guests:
O. Eldholm - University of Oslo (Leg 104 Co-chief)

JOIDES Office:
Maria Burdett
D. Keith
A. Mayer

Introduction and Welcoming Remarks

R. Larson, Planning Committee Chaiman, convened the 8 - 10 October meeting which was held at the Alton Jones Campus of the University of Rhode Island. Meeting participants were welcomed to Rhode Island by J. Knauss (JOIDES Executive Comittee Chaiman). In his welcoming address, Rnauss commented on the overall success of the program, beginning with the smooth transition from the Deep Sea Drilling Project (DSDP) at SIO to the Ocean Drilling Program (ODP) at TAMJ. Knauss pointed out that a number of aspects of the program have been completed in a accordance to the program plan (e.g. the conversion process of the JOIDES RESOLUTION). Knauss further noted that in addition to these successes there are financial problens that can only be solved by increasing the number of members in JOIDES and that the staffing of regional and thematic panels is still incomplete. Presently, the ODP has 4 of the 6 members needed to make the program financiaily sound and there is optimism for an additional member by 1 January 1986. Further, there is confidence for one or two more members during 1986. In closing his remarks, Knauss stressed that the ODP is a high visibility program within the international geologic community and because of this position it will be subjected to intense examination and peer review.

At this time, R. Larson introduced and welcomed the following new members to the Planning Comittee:

T. Shipley (replaced R. Buffler) - University of Texas S. Levi (replaced H. Schrader) - Oregon State University P. Robinson (replaced J. Malpas) - Canada

Larson also welcomed and introduced the following temporary replacements for PCOM members:
D. Ross (substituting for R. von Herzen) - Woods Hole Oceanographic Institution
C. Harrison (substituting for J. Honnorez) - University of Miami

During the closing of the introductory remarks; A. Taira noted that Japan became a full member of the PCOM as of 1 October.

ADOPTION OF THE MEETING AGENDA

The agenda was amended to include adaitional discussion of leg 106 planning and an updated site report for Leg 112 under Short Term Planning, to include the appointment of panel chaiman for the Atlantic Regional Panel (ARP) under Panel Chaiman Appointments and to include a presentation of the ODP Organization inCanada under Any Other Business. Finally, under Short-term Planning, Leg 111 - selection of co-chiefs was amended to read Leg 111 -recommendation of co-chiefs.

It was moved by H. Beiersdorf (Fed. Rep. of Germany) that the ayenda be accepted with the proposed changes. The motion was seconded by M. Kastner (SIO).

Vote: 14 for, 0 against, 0 abstain

Minutes of the pcom meeting , 25-27 JUNE 1985 (HANNOVER)
It was moved by D. Hussong (Univ. of Hawaii) that these minutes be accepted by the PCOM. The motion was seconded by J-P. Cadet (France).

Vote: 14 for, 0 against, 0 abstain

EXECUTIVE COMMITTEE REPORT

R. Larson (PCOM liaison) reported on the results of the $16-17$ September 1985 meeting of the JOIDES Executive Canmittee which was held in Bonn-Bad Godesberg, Fed. Rep. of Gemany.

International Membership:

The European Science Foundation (ESF) has raised approximately $\$ 1.5$ M fram nine countries in a bid for membership. However, the ESF/Australia zsortium cannot join ODP at this time because Australia was unable to raise e additional $\$ 1.0 \mathrm{M}$ needed to fulfill the required $\$ 2.5 \mathrm{M}$ needed for membership. The Australians have not given up hope and are examining other sources of funding. On the other hand, the ESF fomally asked the EXCOM to consider an "Associate " membership at the $\$ 1.5 \mathrm{M}$ level. The EXCOM rejected this proposition and informally asked the ESF to consider a full $\$ 2.5 \mathrm{M}$ membership without Australia using a"creative financing " arrangement. The ESF rejected this possibility but will attempt to raise the $\$ 2.5 \mathrm{M}$ by itself. Further, the ESF will continue to be invited to future EXCOM meetings as special guests.

The United Kingdom (UK) has been unable to raise the full membership by 1 October 1985 and did not attend the meeting. However, G. Gross (NSF) reported that the UK is optimistic that a Memorandum of Understanding (MOU) can be signed that will be effective 1 October. Larson noted that this event would probably post-date 1 October by several weeks or months.

The Union of Soviet Socialist Republics (USSR) was represented at this meeting by Valery Krasheninnikov, who reported that the USSR desires to join the ODP but could not personally guarantee a signed MOU in the immediate future. In order to facilitate Soviet membership in ODP, EXCOM passed the following two motions:
EXCOM Motion: Referring to the motion agreed upon on 5 June 1985; the JOIDES Executive Camittee welcomes the attendance of Dr. V.
rasheninnikov at its present meeting. Recognizing the many
ontributions of scientists from the USSR to the success of the
International Phase of Ocean Drilling: (IPOD) and their significant presence in the world community of marine geoiogists and geophysicists,
the JOIDES Executive Camittee invites the USSR Academy of Sciences, as the body primarily responsible for IPOD participation, to join the Ocean Drilling Program by signing a Memorandum of Understanding (MOU) with the U.S. National Science Foundation and thereby joining JOIDES.

Vote: 14 for, 0 against, 0 abstain

EXCOM Motion: The JOIDES Executive Camitte welcames the interest of USSR scientists in the Ocean Drilling Program. We encourage applications to the ODP operator, Texas A\&M University (TAMJ), from qualified Soviet scientists in order to pemit their consideration for membership of the shipboard scientific party.

Vote: 14 for, 0 against, 0 abstain

Present Finances

J. Baker (JOI, Inc.) reported that the draft program plan has NSF-National Science Board approval at the $\$ 32.5 \mathrm{M}$ level.

Proceedings of the ODP (Publications)

The highlights of reports from the POOM Publications Subcarmittee and the Information Handiing Panel (IHP) were presented to the EXCOM.

After hearing these, the EXCOM requested information on the comparisons of costs between editing and publishing with a commercial publisher and those associated with the "in house" (TAMU) option presently proposed. Larson pointed out that he could not provide this information and therefore, the EXCOM asked that D. Appleman (IHP Chaiman) be invited to the next EXCOM meeting to discuss various options.

EXCOM further asked the PCOM to discuss the publications report with special attention to 1) initiating preparation of Part A's as soon as possible and 2) considering the question of not publishing Part B but releasing the shipboard scientists to outside journal publication as scon as their Part A manuscripts are approved. An EXCOM subcommittee, formed to consider ESF membership, informally asked that PCOM consider having a commercial publisher produce a Journal of Ocean Drilling in lieu of Part B. Manuscripts to this joumal could be subnitted at any time after Part A manuscripts were approved so that articles would appear in print as quickly as possible. However, under this option, leg conerence would be lost. In addition, ODP would guarantee to buy a minimun number of copies and the publisher, in the future, migit reprint articles or produce synthesis volumes.

The EXCOM firther suggested that bids for these options be sought from commercial publishers in ODP-member countries.

The EXCOM requested that the PCOM wait until January 1986 to restaff the panels. Further, they asked that panel members not be added in order to achieve some ad hoc level (nominally l4) but that vacancies be filled only in areas of missing expertise. EXCOM indicated that the PCOM is free to draw on the entire world community, including non-ODP countries, to accomplish panel staffing.

Third World Participation
This issue was raised by the EXCOM Chairman on pragmatic (getting permission to drill within the 200 mile limit of potential coastal countries) and humanitarian (increasing the information exchange between ODP and Third World scientists) grounds. EXCOM acknowledged the pragmatic need but generally felt that anything beyond that would have to await a better financial situation.

The EXCOM Chaimman stated that any advice the PCOM could give would be welcomed and appreciated.

Discussion:

During discussion, P. Robinson (Canada) indicated that the interaction between Canadian and Third World scientists has been funded by the International Development Research Center (IDRC) in Ottawa,
ich has developed a number of contacts in India, Asia and Africa.
cther, the IDRC might very useful and interested in the establishment of a program to allow for Third World participation. H. Beiersdorf (FRG) further suggested that at a recent IOC workshop in Sri Lanka, Third World scientists expressed an interest in participating in ODP but stated that funding is lacking. Therefore, IOC should also be informed of JOIDES'intentions. D. Hayes (I-DGO) also supported the previous suggestions and suggested that JOIDES contact CCOP and the East-West Center in Honolulu for additional contacts in the Third World. J.Clotworthy (JOI) informed PCOM that JOI is preparing a proposal to support Third World scientists and that AGID might be another organization to approach.

The discussion was closed by the following motion which was proposed by Biersdorf (FRG) and seconded by Taira (Japan):

PCOM Motion: PCOM requests that the JOIDES Office establish an infomation transfer service to AGID, IOC, CCOP and SCOR for the purpose of conveying future plans of the ODP for operations in the Indian and Pacific Oceans. Further, advice should be obtained from these organizations concerning the procedures needed in order to include individual Third world scientists in the ODP.

Vote: 14 for, 0 against, 0 abstain

NATIONAL SCIENCE FOUNDATION REPORT

G. Brass (NSF) reported on the following changes at the NSF: As of 1 September 1985, Sandra Tove was promoted from the head of the Ocean

Centers and Facilities Section (OCFS) to the post of Controller of the office of Budget Audit and Control in NSF. The vacancy left by the pramotion was filled by Dr. DonaldHeinrichs, previously the Program Manager of the Division of SubnarineGeology and Geophysics. Further, R. Buffler (Univ. of Texas) has beenappointed to the post of Associate Program Director of the ODP and W.Merrell (TAMU) has been naminated to the post of Assistant Director OfAstronomy, Atmospheric, Earth and Ocean Sciences (AAEO) at the NSF.Merrell's namination is presently awaiting confimation in the U.S.Senate. Finally R. Wall, head of the Ocean Sciences Research Section atNSF is leaving to join the Institute of Marine Science in Maine.

Budget

The National Science Board (NSB) has reviewed the program plan of the ODP and granted funding for the program to cover the next 3 years at projected levels of support which total \$108M. Further the NSF is authorized to exceed this amount by 10% without referring to the NSB for approval. The figures presented to the NSB were as follows:

FY 86: \$32.5 M
FY 87: $\$ 36.0 \mathrm{M}$ which includes $\$ 1.0 \mathrm{M}$ for inflation and program costs, \$1.0M transferred from DSDP, $\$ 1.0 \mathrm{M}$ estimated increase fram the contributions of non-US members and $\$ 1.0 \mathrm{M}$ in real growth from the NSF contribution.

FY 88: $\$ 39.5 \mathrm{M}$ which includes $\$ 1.0 \mathrm{M}$ for inflation, $\$ 1.0 \mathrm{M}$ for real growth, $\$ 1.0 \mathrm{M}$ from final DSDP operations and $\$ 0.5 \mathrm{M}$ inflation increase from the contributions of non-US members.

The NSF Budget is presently at the US Congress and is stalled in the overall U.S. budget procedures there. Further, the ODP needs 5 international members or Congress will eventually request a re-evaluation of the program.

Environmental Impact Statement

A draft Environmental Impact Statement was prepared in July 1985 and issued to EXCOM and PCOM as well as to the 16 signatories of the Antarctic Treaty at their 7 - 18 october meeting. The final draft will be ready by mid-November, recirculated for additional comment and the final copies issued by 1 January 1986. The document will then be submitted to the Enviromental Protection Agency. (EPA) for approval.

JOINT OCEANOGRAPHIC INSTITUTIONS REPORT
J. Clotworthy (Vice-President, JOI Inc.) reported that the program plan for FY 86 has been approved and copies mailed to both EXCOM and PCOM members. JOI is presently working on the EY 87 program plan using the target figures provided by NSF and estimates from the ODP subcontractors.
D. Hayes asked JOI to comment on the changes that were suggested at the Hannover PCOM to the program plan for FY 86 and requested that a 1-2 page document be prepared which addresses these changes. JOI indicated that they and the subcontractors responded in full to the EXCOM Budget Subcamittee recomendations. This response resulted in a number of changes to the original document including budget amendments, although the substance of the plan is the substantially the same.

Clotworthy further reported that organization of the Performance Evaluation Camittee continues and that the first site visit is scheduled for I-DGO in late October. The Camittee will then tour the JOIDES RESOLUTION at the St. John's portcall and conclude its evaluations at TAMJ. At this point, the comittee has had to find a replacement for its industry representive and M. Horn (Cities Services) has agreed to replace P. Vail (Exxon). Further, the comitee is seeking a replacement for non-US representation as J. Aubouin (France) is unable to serve on the committee. K. Hinz (FRG) has also agreed to serve on the camittee.

Discussion:

P. Robinson suggested that an additional member of the committee could be possibly be nominated fram the Canadian camunity.

SCIENCE OPERATOR REPORT

Leg 104 (Norwegian Sea)

The Science Operator Report opened with a presentation by 0 . Eldholm (Co-chief) of preliminary cruise results from the Norwegian Sea.

The primary objectives of Leg 104 were to sample the dipping seismic reflector sequences believed to be associated with late stage continental rifting or early seafloor spreading and which are found under sections of the Norwegian continental margin. Drilling was projected to penetrate the dipping reflectors and into material which forms an acoustically opaque basement that is delineated by a sharp contact known as Horizon K. Lastly, Leg 104 was designed to study the paleoenviroment during Cenozoic times.

In order to accamplish these goals, a three site transect with one deep section (Site $642,1.2 \mathrm{~km}$) and two shallow sections (Site 643, 550 m and Site $644,250 \mathrm{~m}$) was drilled across the Voring Plateau.

Site 642

In beginning his report Eldholm noted that due to time contraints - rolved during the cruise, the two site approach of drilling the ping reflectors and reflector K objectives that was approved by the rom was not done and the co-chiefs decided that the objectives of the
two sites could be achieved with one deep site. This plan was approved by the PCOM at their Hannover meeting just after the beginning of Leg 104.

Operations at Site 642 drilled initially through an upper strata containing glacial sediments that exhibited distinct glacial-interglacial cycles, ice rafted debris and volcanic ash layers and that is suggested to have had subaerial and subaqueous origins. Below this sequence, which is marked by a distinct change in sediment lithology and ties into a regional reflector of Miocene age, the dipping reflector sequence wasfound to consist of a cyclic unit of flow basalts that alternated with layers of volcaniclastic sediments.At the base of this sequence, Reflector K (Eocene age) separated the overlying volcanic and glacial material from underlying basaltic material. Reflector K was found to be a 8 - 10 m thick unit of volcaniclastic sediments that immediately covered a lower volcanic series of either continental or cceanic origin. The material in this sequence was characterized as consisting of trachytic basalt, possibly associated with late stage continental rifting.

Site 643
At Site 643, sixty-two cores sampled pelagic and hemi-pelagic sediments that were underlain by basalt and which are postulated to have come fram a tilted fault block on oceanic crust.

Site 644
Operations at Site 644 drilled 250 m and resulted in 13 cores that contained Mid-Pliocene to Pleistocene glacial/ interglacial cycles that occasionally contained biogenic gases.

In sumarizing the preliminary results, Elcholm indicated that the primary objectives were achieved, that these cores contain the best record of high latitude Cenozoic sediments ever collected and the combination of results from the three sites will provide a good means to reconstruct the paleoceanographic history of the region.

Eldholm (in consultation with J. Thiede, Co-chief 104) had the following recomendations/observations concerning shipboard operations:

1) Better integration of the external experiments, the Vertical Seismic Profiler (VSP) and the logging program, into the science program. The Co-chiefs suggested that the VSP experiments should be proposed to and accepted by PCOM before inclusion in a leg program and that the use of non-standard logging tools should be determined at the pre-cruise meeting.
2) Revision of the logging time estimates as the present estimates are a "bare bones" minimum.
3) That the scientists performing the external experiments be familar with the geolgy of the area and the scientific objectives of the cruise.
4) Better comumication between the ship and shore to avoid loboying efforts by proponents of external experiments.

Improve the accuracy and methods of monitoring "in situ" gas. Presently, it is difficult to make gas deteminations before extrusion from the cores. This allows for trace amounts to disappear.

Discussion:
During discussion, Garrison (TAMU) indicated that that recommendations have been received fram K. Kvenvolden for improving the geochemistry lab and that a workshop this month in College Station will address the problem of gas detection.

Leg 105 (Baffin Bay and Labrador Sea)
L. Garrison reported that Leg 105 left St. John's, Canada on 28 August 1985 after an extended portcall due to repairs to the heave compensator. A NSF/JOI sponsored film crew was placed onboard to film a documentary of shipboard operations.

The RESOLUTION began operations in Baffin Bay at Site BB-3B, accompanied by the ice picket boat CHESTER, and encountered shallow level boulders in 4 holes which temporarily terminated operations while the site was relocated. The ice managenent program worked well as RESOLUTION pulled out/reentered drill holes twice for icebergs without interruption to drilling, while maintaining
fety standards.
At Hole 645E (Site $\mathrm{BB}-3 \mathrm{~B}$), a re-entry cone was set and drilling proceeded to 1147 m before time constraints ended operations. Cores exhibited terrigeneous sediments predominantly void of nannoplankton. However, sedimentation rates indicate that deposition has occurred at approximately $50 \mathrm{~m} / \mathrm{m} . \mathrm{y}$. The magnetostratigraphy was good to 900 m . Drilling results further suggest that at 1100 m an erosional unconformity, R2 (Miocene age), was formed by a strong southward flowing current. Drilling was terminated on schedule and the co-chiefs decided not to drill to reflector R3.

The CHESTER stayed with RESOLUTION during the trip to IA- 5 and during the transit, when Hurricane Gloria was encountered. The CHESTER was released at IA5 (Site 646A), APC coring recovery was 88% and at Site 645B APC coring resulted in 55 - 88\% sample recovery. After finishing LA-5, RESOLUTION steamed to LA- 9.

At the conclusion of the cruise, RESOLUTION is scheduled to arrive in St. John's on 27 October 1985 and at that time the guidebase will be put onboard for Leg 106. An open day is scheduled for 29 October 1985 to be hosted by the Canadian goverment's Minister of Mines.

Leg 106 (MARK-1)
Staffing for Leg 106 is completed and deliveries and guidebase fabrication -e on schedule. Two guidebases have been built and were ready for transport on
Jctober. The first guidebase will be bolted together in the moonpool of KESOLUTION in an operation that is scheduled to take $2-3 \mathrm{hrs}$. The IV winch has been tested as has the Mesotech sonar system.

The Navidrill core barrel that was tested on Leg 104 had mixed success as problems occurred with spinning up the motor to a proper rpm without affecting the weight distribution on the drill collar. This problem needs additional $R \& D$ work that has been delayed at this time.However, this motor was one of three that are under examination by ODP and the other two types will be used on Leg 106. These have been successfully tested on land to detemine if all camponents areworkable.

Leg 107 (Tyrrhenian Sea)

Staffing for Leg 107 is not complete at this time, however, completion is expected in the near future. The co-chief pre-cruise meeting has occurred and operations planned. Clearances to operate in Italian waters have been requested through the U.S.State Department. Further, a safety review of the Leg 107 drill sites will be conducted on 23-24 October. Garrison noted that three berths on RESOLUTION are being reserved for TV/film crews and a congressional visit.

Leg 108 (Equatorial Transect-NW Africa)
The Science Operator has met with the co-chiefs concerning operational plans for the leg but no invitations for staffing have been sent. It appears that clearances to operate in coastal waters could be a problem with 3 sites in the Exclusive Economic Zone (EEZ) of the Cape Verde Islands, the Spanish Sahara and Mauritania.

A safety review of the Leg 108 drill sites will occur at the same wime as the Leg 107 sites.

Leg 109 (MARR-2)
Garrison reported that the Co-chiefs are Bryan and Juteau and that staffing is in hand for the leg.

Leg 110 (Barbados)

Garrison reported on the strategies proposed for drilling the decollement zone of Barbados.

The priority hole (Site LAF-1) will be drilled to sample temperature, pressure and pore fluid content at the highly disturbed decollement level. To acomplish this goal, discussions have been held with C. Moore (Co-chief) and G. FOSS (ODP/TAMI). FOss proposes that three holes be drilled into and through the decollement with the first hole, a single bit hole, drilled with an XCB corer for temp., pressure and logging. Based on the results of this hole, a re-entry cone should the be set with 20 in . casing to a depth of 420 m . Belowwhich, 16 in. casing should be set and rotary cored as deep as possible, afterwhich 9 in. casing should be set and permeability tests using the Stratopacker conducted below the 9 in. casing. Pemability tests should then be conducted in the cased hole in the decollement zone. The thirdhole is an upper permeability hole above the decollement using the Lynes TAM packer.

The time estimates for these operations are:

```
    28 days IAF-1
    14 days IAF-2
    9 days LAF-3
    5l days
```

then transit to Bridgetown, Barbados.

Discussion:

During discussion, Garrison pointed out that drill-in casing (aspreviously discussed at other PCOMs) is still in the general scheme and is an alternative to casing off the decollement zone. However, the latching assembly of the old drilling array will have to be redesigned to mount at the bottom of the casing string.

Leg 111 (Hole 504B)

The Science Operator indicated that the drilling system used on Leg 106 , with new drill bits, will be used on Leg 111 without the use of the guidebases. TAMJ engineers have indicated that with this system drilling rates should increase by $10-20 \%$ over those of DSDP. However, the issue of whether this increase in drilling rate will yield a corresponding increase in per cent reoovery will be better answered after the results of Leg 106 drilling are examined. In closing, Garrison asked advice fron the PCOM concerning co-chief nominations since the previous nominations were made before Leg 111 drilling plans changed.

Leg 112 (Peru Margin)

Nominations were made to invite D. Hussong and E. Suess as the co-chiefs on Leg 112. Suess has accepted but due to other comitments, Hussong has had to decline the invitation had to refuse.

Ship Schedule
SEDCO has requested that the ship's schedule be balanced as equally as possible for the odd and even numbered cruises in order that the two SEDCO crews will have equal amounts of sea time. This also translates, for SEDCO payroll purposes, into equal pay for the two crews. Under the SEDCO system, the crew that spends less than half time at sea reimburses SEDOD which in turn increases the amount of sea pay paid to the crew which has spent more than half time at sea. For 1986, the schedule was adjusted by TAMI to accomdate this request (Appendix A). The adjustment in the schedule has resulted in the addition of a transit leg- Leg. 1llT. This has affected some cruise legs in that 2-3 days have been subtracted from drilling days and others have been. increased by that amount. This results in Legs $108 \& 109$ remaining unchanged, an increase of $3 \& 2$ days (respectively) for Legs $107 \& 111$ and decrease of 3 days for Legs $110 \& 112$. This results in the odd number cruises equaling 166 days and the even number cruises equaling 167 days.
zussion:
It was the general sentiment of the PCOM that SEDCO has become less flexible over time in accepting the ODP ship schedule and perhaps SEDCD should be more flexible, possibly amending its payroll policy, as scientific objectives for same of the proposed programs may disrupt the balance in days-at-sea. In particular this policy might affect the special legs (e.g. the Antarctic and Rerguelen legs) which may be longer than the regular ODP legs. The Science Operator indicated that SEDCO would like to keep ODP cruises to a maximum of 60 days. However if the PCOM requests a 70 day leg, TAMU will negotiate until a compranise is reached. On the other hand, SEDCO may agree to a 70 day leg as long asthere are not too many and if a 60 day leg occurs on an odd numbered leg then a 60 day leg should be given to an even numbered leg during the $12-14$ month period in order to balance the schedule. The PCOM asked what is the cost of the days-at-sea balance to ODP/IAMU. The Science Operator responded that there are no direct costs to ODP, however, it is in the best interest of the program to keep the balance in order to keep morale high and the loss of campetent shipboard people to a minimum. It was strongly emphasized by several PCOM members that the basic penalty under this system is the loss of drilling days for science on the special cruises. There was further suggestion that the lost drilling days may be recovered by limiting the number of public relations days. The discussion was ended by the following motion,proposed by Robinson and seconded by Rastner:

PCOM Motion: The Planning Camittee recognizes the concerns of SEDCD in l-lancing the length of the odd and even legs over a 1-2 year period andwill
lude this consideration in its planning of future legs. It must be recognized wat, because the planning of lengths of legs is guided primarily by their scientific objectives, this may not always be possible.

Vote: 14 for, 0 against, 0 abstain
Ifrelosing the issue, the PCOM asked that a running balance be kept by TAMU and the PCOM notified of this account in order to aid in planning.

WIRELINE LOGGING SERVICES OPERATOR REPORT

R. Anderson (Director-Wireline Logging Services, I-DGO) reported on the excitement within the Borehole Research Group (BRG) over the development of a method to determine aluminum concentrations during logging using the NGT. This increases the BRG's ability to conduct downhole geochemistry and to do clay typing via logging information. Software development to refine this operation is continuing and input is now needed fran the geochemical camunity.

The BRG is presently been examining the problem of excess pore pressure as it relates to hole stability problens by examining the clathrates and pore pressures in DSDP Hole 570.

Wireline Packer Development

Anderson reported that the wireline packer cannot be delivered for Leg 110 because AMOCO has teminated tool development and cutback on staffing. However, AMOCO will release the plans of the system to ODP and M. Zoback has been authorized to act as an agent in finding a company to build the packer. At this time, PSI (Calif.) and TAM have been approached and if a favorable response is not received, ageneral Request for Proposals (RFP) may be issued.

Logging Time in the Borehole
Anderson indicated that the Borehole Research Group has had difficulty in getting time to conduct logging in the borehole using the standard suite of tools and requested advice fram PCOM on defining which tools should comprise the standard logging suite. In addition, Anderson indicated that a standard suite should include nuclear, sonic and electric logs and suggested thiat for holes greater than 400 m , the best tools available in each of these three categories be used.

Discussion:

The PCOM indicated that a major problem was that the logging program is continually changing and that a defined standard logging program is needed but difficult. The POOM also identified a lack of education concerning what the various logging tools can achieve and communication between I-DGO and co-chief scientists which could be solved by including a logging representative into the pre-cruise planning process. Anderson suggested that the educating of the ODP cormunity could be done through workshops similar to the Technology and Engineering Workshop held at College Station and which could be conducted for the PCOM at its January 1986meeting. Discussion of the issue was closed by the following motion, which was proposed by P. Robinson and seconded by M. Kastner:

PCOM Motion: The Planning Camittee reinterates its requirement to have a standard logging package run in each hole deeper than 400 m and defines standard logging as a suite of sonic, electrical resistivity and active nuclear tools to be run within a reasonable time period.

Vote: 14 for, 0 against, 0 abstain

Status of the L-DGO Logging Person on RESOLUTION

Anderson indicated that at the Hawaii PCOM, the L-DGO logging person was not considered to be a menber of the scientific staff although the position has been part of the science party at the discretion of previous co-chief scientists. At this time, TAMJ has requested that PCOM formalize policy which either places the position as a member of the science party or does not. Anderson emphasized the importance for the loggers to be considered part of the science party as problens could occur with TAMU concerning staffing on RESOUUTION. Anderson further indicated that the L-DGO logger represents L-DGO in the same fashion as the TAMJ science representative represents TAMJ. The Science Operator responded that the issue does not concern titles or the number
berths but is a question of who invites scientific input into the t cruise volumes.

Discussion:

A number of PCOM members asked what would be the problem if the L-DGO logging person who goes to sea, makes significant contributions to the cruise is labelled as a member of the scientific party. TAMU responded that it disagrees with a technician being labelled as a member of the science party while at sea. Other PCOM menbers indicated that again the issue is one of pre-cruise communication that could be solved by the integration of the logging program into the science program. I-DCO again responded by stating that the L-DGO logger is a scientist and should be labelled as such. The discussion was closed by the following motion, proposed by Robinson and seconded by Hayes (I-DGO). However before voting was conducted, TAMI requested veto power over selections as they are responsible for cruise participant selection. The discussion was closed by a motion proposed by Robinson and seconded by Hayes.

PCOM Motion: This is an amendment to PCOM motion \# 500. The PCOM recommends that the Wireline Logging Services Contractor should make nominations to the Science Operator for the Shipboard Iogger (personnel from within the logging subcontract) to be included as part of the Scientific Party of each leg.

Vote: 14 for, 0 against, 0 abstain

Anderson closed the Wireline Logging Services Operator Report by stated that D. Fornari has resigned his position as Operations Manager with the Borehole Research Group and circulated a job description of the post.

REPORTIS FROM PANETS

For Executive Sumaries of the Minutes of the Panels, please see. the appropriate appendix.

Atlantic Regional Panel (see Appendix C)-informal report by R.

Larson

Central and Eastern Pacific Panel (see Appendix D) Southern Oceans Panel (see Appendix E) Indian Ocean Panel (see Appendix F)

Western Pacific Regional Panel (see Appendix G) Sediments and Ocean History Panel (see Appendix H) Lithosphere Panel (see Appendix I)

Tectonics Panel (see Appenđix J)-informal report by A. Taira
Information Handling Panel (see Appendix K)
After hearing the Information Handling Panel report the following motion was proposed by S. Gartner and seconded by D. Ross (WHOI):

PCOM Motion: The PCOM wishes to thank William Riedel for his many contributions over the years as Chief Curator of the Deep Sea Drilling Project (DSDP) . Further, the PCOM recommends that Riedel retain hisrole in the development of the Micropaleo Reference Centers, including establistment of the remaining centers and planning for the preparation of the final fossil groups.

Vote: 14 for, 0 against, 0 abstain

REPORT OF THE SUBCOMMITTEEE FOR REVIEN OF ODP PUBLICATIONS
(see Appendix L)
S. Gartner (Subcomittee Chaiman) reported to the PCOM.

It was the general consensus of the membership, that the POOM reiterate its position on the planned publication of Parts A \& B as stated by the Subcamitee. This is dependent on the outcome of a review of costs of the alternative publication processes for Part B (including the possibility of replacing Part B by an ODP Journal) which should be undertaken as soon as possible by the Science Operator. The PCOM then discussed the proposed ODP Journal as to its status as "grey literature" and detemined that the Joumal could only be temed such by the quality of the papers which could be controlled by a peer-review process. PCOM agreed that the publication of the Part A volumes should occur as soon as possible.The decision on Part B was made in the following motion, proposed by Kastner and seconded by Hayes:

PCOM Motion: The PCOM reiterates its original publication policy (Parts A \& B: Proceedings of the ODP). A further fincial review should be undertaken of the option of producing Part B in Journal form.

Vote 13 for, 1 opposed, 0 abstain
In closing, M. Kastner alerted the PCOM to conern about the quality of the DSDP Initial Reports index being produced under contract to the Project. It was agreed that the issue should be resolved by DSDP, in consultation with NSF. Meanwhile, the IHP should be asked to formulate an indexing policy in order to avoid future problems with ODP volumes. The PCOM agreed to formulate an indexing policy possibly during the January meeting.

REPORT OF THE TECHNOLOGY AND ENGINEERING WORKSHOP

R. Larson reported on the workshop.

The engineering workshop was conducted by the ODP's Engineering and Operations Group in September at College Station. The purpose of the
-kshop was to inform members of the ODP community of the activities at TAMU , to get input from the science community in setting short-term goals for future projects. Attendees were asked to prioritize a list of projects for future development and the results fell into 2 groups:

Group 1-Higher priority
bit developnent
heave compensator campatibility for piston coring
hard rock spud system
high temperature drilling/coring adaptations
Group 2- Medium Priority
locakable flapper (float valve)
drill-incasing (compatible with re-entry)
pressure core barrels (in situ samplers)
string string dynamics
upgrade-hydralic bit release
core liner improvements
During discussion the Science Operator requested that an ODP/TAMJ engineering liaison be appointed to TFCP, LITHP and DMP. The Science Operator further suggested that TEDCOM be reformed to better interface with the ODP comunity and that the expansion of communications with the ODP conmunity should not be viewed to be in conflict with TEDCOM.

PCOM Chaiman indicated that request for revising TEDCOM can -.dressed at the January meeting when J. Jarry (TEDCOM Panel Chaiman) will be present.

It was also the consensus of the PCOM that the above listing should be circulated to all the panels for evaluation and comment.

SHORT-TERM PLANNING

Legs 106/109 (MARK $1 \& 2$)
It was the recamendation of the PCOM at the Hannover meeting that both guidebases be committed for use on Legs 106 and 109. Also, the PCOM recommended that the IITHP develop a back-up plan for Leg l09.LITHP, as reported by PCOMliaison- R. McDuff, has in response recamended that all options for Leg 109 be kept open until results are obtained from Leg 106. IITHP has further recomended that both guidebases be used in the Atlantic objectives only if needed and to get one good hole.Therefore if the first guidebase is successful, the second should not be deployed in the Atlantic but should be used for East Pacific drilling as Leg lll.

PCOM Consensus: If the first guidebase is successful in beginning bare rock drilling, then it should be used for the remainder of Leg 106. However, if the first guidebase is not successful due to factors which can be corrected at sea n the second guidebase should be deployed provided that there is a reasonable uunt of drilling time available.

Further, if Leg 106 guidebase deployment fails completely, then the Leg would default to drill the Kane Fracture Zone (nodal basin). LITHP responded by saying that excellent site survey work in the MARK area has defined ideal sites for Legs 106 and 109. However, discussion by LITHP members raised the issues of off-axis drilling to examine age related changes rather than drilling a fracture zone and whether or not the nodal basin seems a high risk target given the lack of knowledge of sediment thickness. LITHP indicated that the decision to drill the nodal basinsite vs. Other fracture zone sites must be left as a juagenent call for the co-chiefs but they urged that a reexamination of the site survey data be made to detemine if any inferences of sediment thicknesses can be made. The LITHP recommended that final decisions on Leg l09back-ups (if needed) be delayed until the January 1986 LITHP meeting which is before the January 1986 PCOM meeting, although it was re-affimed that DSDP Hole 395 should be logged during Leg 109. It was the general consensus of the PCOM to take the IITHP advice to defer decisions on Leg 109 back-ups until January 1986.

PCOM Consensus: The PCOM recomends that the decision as to where to conduct operations in the Kane Fracture zone be left to the co-chiefs in the case that the default options are necessary.

The PCOM then discussed whether a single bit hole next to the guidebase should be drilled, using the Navidrill, to collect a basalt "mudline" core since the upper 50 m of the section would totally disrupted by drilling operations. Discussion was closed by the following motion as proposed by Hussong (Univ. of Hawaii) and seconded by Robinson:

PCOM Motion: The PCOM requests that, as part of the engineering tests on Leg 106, an attempt be made to spud into bare rock with the Navidrill without the guidebase.

Vote: 14 for, 0 against, 0 abstain

Leg 107

For the Atlantic Regional Panel recommendations for the order of priorities in the Tyrrhenian Sea (Leg 107) see Appendix C. It was noted by the Science Operator that staffing is $2 / 3$ complete and the science party will include 2-3 Italian scientists to meet clearance requirements but no other ESF scientists.

After hearing these priorities, the PCOM came to the following consensus:

PCOM Consensus: For Leg 107, The PCOM recomends that Site 5B be contiuously cored and that no logging be conducted at Site 2. Otherwise the plan is accepted as proposed.

Leg 108
For the recomendations of ARP concerning Leg 108 drilling, see Appendix C. For Leg 108, the co-chief scientists (Ruddiman \& Sarnthein) have divided the drilling priorities into three packages of the Sarnthein paleowind proposal, the Ruddiman Sierra Leone proposal and a package of 2 sites containing EQ 9 and $E Q$ 7. They further propose to spend 30.5 days transiting to and within the Sarntheim area, 14.0 days in the Ruddiman area and any remaining time will be spent at the other 2 sites and transit to port. These sites will have double
' coring and 1 hole will be cored with $X C B$ to the proposed total depth. No fging is proposed as all are shallow ([400m) sites. After discussing the inclusion of logging in order to enhance the acoustic stratigraphy of the continental margin, the following was agreed:

PCOM Consensus: The PCOM asks that the co-chiefs on Leg 108 re-consider their decision to conduct no logging on Leg 108 and L-DGO is asked to maintain contact with the co-chiefs. However, the PCOM does not place logging as a requirement for Leg 108.

Leg 110
For an in-depth review of Leg 110 drilling plans see the letter from C. Moore (Appendix M). The current plan for Leg 110 is to drill 2 - 3 holes at Site IAF - 1. The first hole would be a single bit hole to basement as a jet-in soil test. The site would be APC cored until refusal for pressure, temperature and pore fluid content. A second hole would be a deep hole drilled to conduct permeability tests using a hybrid/TAM packer. The third hole would be a shallow hole to conduct permeability tests on the upper sections of the hole. The alternative to the second hole is to use drill-in casing to case the decollement and to rotary core into basement. For these operations, a hybrid Lynes packer and drill-in casing will have to be developed. At this time, the PCOM Chairman read a letter from K. Becker concerning the proposed packer modification (Appendix N). The alternate plan, if the - Dollement cannot be penetrated is to drill a series of single bit
es across the accretion wedge down to the decollement zone in order to measure changes in structural style, the hydrogeology and deformation characteristics.

The Wireline Logging Services Contractor recommended that the PCOM appoint a 3-4 person working group of Packer scientists to work with I-DGO in the development of the packers. The PCOM appointed K. Becker, R. Anderson and an ODP engineer as a subcommitee with D. Hussong (Chaiman) to evaluate packer development including potential hybrid packers, especially for Leg 110.

The PCOM considered the issue of drilling a reference hole in an undisturbed section of ocean floor near the subduction zone on Leg 110 site in order measure physical properties. It was emphasized that this hole could establish overpressure sites and monitor porewater porosity and other physical properties.The PCOM reaffirmed its Hannover decision in the following consensus:

PCOM Consensus: The PCOM agrees that a reference hole for Leg 110 should be quickly drilled and washed to basement and this hole will be logged as a reference section.

PCOM also considered a back-up plan for Leg 110 should complete penetration of the decollement zone prove impossible. It was agreed that operations will be '"mited to structural and hydrogeologic questions associated with the
gressive growth of an accretionary prism (as recamended by the co-chiefs, s $\times P$ and TECP).

PCOM Consensus: The PCOM agrees that drilling the decollement zone is the prime objective of the leg and endorses the proposals for a back-up hydrogeology program.

Leg 111
Recommendations of Co-chiefs:

CEPAC	LITHP
Hyndraman \& Sinton	Becker
Mottle and Rinoshita	Bougault
(with Zoback)	
Robinson \& Langseth Emmerman	
	Kinoshita

It was the consensus of the PCOM that 2 geophysicists (with expertise in downhole instrumentation) and 2 petrologists be naminated to TAMI. However no specific names were recomended. The PCOM further agreed that Becker should be discouraged from participating in. Legs 109 and 110 if he is in consideration for Leglll.

Leg 112 Site Survey Report
D. Hussong (Site Survey Co-chief) reported that the site survey was completed in April and 1500 km of 24 channel multi-channel seismic (MCS) data along with Seamarc imagery was collected from the Yaquina and Lima basins along the Peru margin.

The Seamarc records and coring and dredging information show that the margin is characterized by nomal faulting in the trench axis, evidence for diapirism on the shelf and sediment outcrops on the upper slopes. The forearc area was found further to consist of lenses of dolcmite that are underlain by metamorphosed continental rocks.

Presently, there are three objectives for this area, 1) to investigate the tectonics and structure of the region by examining the vertical history of the margin 2) to examine the history of truncation along the margin and 3) to study the upwelling history, the paleoceanography and the diagenetic processes associated with the vertical tectonics of margin basins. To accomplish these objectives in the southern survey area, 3 sites are proposed with 1 hole at a seaward site with rotary drilling to 500 m through the sediment lenses and 2 holes along the upper slopes to examine vertical tectonism and sample Paleogene sediments. For the northern survey area 4 sites are proposed with 2 holes near the tip of continental material, 1 in the trench axis to sample landward dipping reflectors and 1 along the upper margin. A proposal is being assembled at this time and drill time estimates are 56 days.

Paleoceanography sites near Southern Chile

The Southern Oceans Panel and the Sediments and Ocean History
sked to prioritize the proposed sites and they were found to be of less priority than those already in their respective programs.

LONG TERM PIANNING

1978-1988: Southern Oceans/ Indian Ocean
Weddell Sea - Atlantic SubAntarctic transect
In opening remarks it was stated that plans for the Weddell Sea are well established and that the next step in plannng is the selection of co-chief scientists. The PCOM Chaiman indicated, at this time, that SOP has made recommendations and that he will canvas SOHP and ARP for suggestions:

The PCOM then discussed the start date, which is originally scheduled for 1 January 1987. The SOP has indicated that it recammends an earlier start date (preferrably 15 December 1986) because of weather and ice problems and suggests that the best weather period is during November/December. TAMU responded by saying that if these changes are accepted then cruise plans will have to be modified with the reduction of time for previous legs. It was further suggested that there is no way to predict exactly when the best weather window will occur and emphasized that the start date should remain unchanged.

It was the consensus of PCOM that the 1 January 1987 start date semain unchanged.

Atlantic SubAntarctic Transect Sites: Adequacy of Site Surveys
The NSF expects that the site surveys for the Atlantic SubAntarctic sites are adequate enough for the proposed program.However; the NSF pointed out that without the addition of a 5th member into JOIDES, serious problems may arise with US Science funding of these and other site survey proposals.
H. Biersdorf indicated to the PCOM that the POLARSTERN will conduct site surveys in the Weddell Sea/ Bransfield Strait areas in November of 1985 and this site survey has been well coordinated with SOP.

SOP requested that a member of the logging group be present at their next meeting in order to estimate logging times in conjunction with drilling times. The PCOM agreed with this request and suggested that I-DGO act on this request as soon as possible.

The Science Operator presented the following time schedule for drilling: 60 days-Weddell Sea leg 5 days-Portcall at Port Stanley, Falkland Is. 48 days-Sub-Antarctic leg

In discussing Port Stanley and Capetown portcalls,TAMU indicated that after rummuications with Peter Barker it was determined that there are no problems anticipated with Port Stanley, although the fuel situation is uncertain. . In
contrast, sensibilities associated with South African politics in combination with the sensibilities of several non-US JOIDES members towards this situation suggest that this port should be avoided. Futher, a refuelingstop in this region could be conducted at Reunion Is. but this will add3 - 4 days to the Sub-Antarctic leg. In closing discussion, Biersdorf suggested that the POIARSTERN could possibly be used to refuel RESOLUTION, however, coordination of this activity should occur as soon as possible.

The need for an ice-breaker or ice-strengthen escort vessel for RESOLUTION was discussed. TAMI expressed concern at the cost of an ice-breaker but agreed that an escort vessel capable of moving growlers fram near the drillship was desirable. TAMJ's preference was for a cammercial escort ship rather than rely on goodwill and conflicting schedules of other ships likely to be in the area at that time.

Southern Indian Ocean
The Science Operator indicated that after discussions with the operators of the MARION DUFRESNE, it has become apparent that operations schedule of the DUFRESNE miay strongly influence the schedule for RESOLUTION if it is to act as a resupply vessel during the Kerguelen campaign. Further, if the crew transfer at Kerguelen is done by ship the estimated cost (with 2 SEDCO Crews at sea, ODP sea pay, the cost of M. DUFRESNE and ship costs) will approach the $\$ 800 \mathrm{~K}$ mark. The alternative to this program is to spend 18 days of time transiting the ship back to Reunion Island to complete the crew change and then to steam back to the work area.

During discussion of the crew change at Kerguelen, the objectives of the Rerguelen program were reviewed and NSF informed PCOM that they should examine the ODP budget for areas where reductions worth $\$ 800 \mathrm{~K}$ could be made, if PCOM agreed to the proposal to use the M. DUFRESNE. w During discussion, it was suggested and supported by several PCOM members that the 18 transiting days could be recovered by extending the cruise bythat amount. The discussion was closed by a motion by Hussong and seconded by Harrison (Univ. of Miami):

PCOM Motion: After reviewing the costs of the transfer, the PCOM found, pending a final cost estimate, them to be too expensive and advises that the ship schedule be arranged around a normal port stop with no support vessel.

Vote: 13 for, 1 against, 0 abstain

The PCOM further suggested that the 18 drilling days could be deferred into the Western Pacific program. This round of discussion was closed by a motion by Kastner and seconded by Harrison:

PCOM Motion: At the January 1986 meeting, the PCOM will examine (in detail) the total length of time for the Kerguelen Science program and will ask proponents to justify drill site locations.

Vote: 13 for, 0 against, 1 abstain

The Science Operator was asked to refine the cost estimates for the .w transfer during the Kerguelen leg and present these at the Januarymeeting.

Indian Ocean (Remainder)
PCOM Consensus: The PCOM reaffimed its camitment to single legs (nominally approx. 2 months) for the Red Sea and a Neogene package. Detailed planning for these legs will take place in January. PCOM also sgreed to include drilling on the SW Indian Ocean Ridge and on the fossil ridges of the Mascarene Basin in the Indian Ocean program established by PCOM in June.

1988-1989. Western Pacific

After reviewing the recomendations of CEPAC and WPAC, it was agreed that the thematic problems for the Western Pacific be reduced to a limited number of objectives in order to aid in the allocation of ship time. It was further concluded the boundary between the CEPAC and WPAC was unclear and needed to be defined. This definition was achieved in a motion by Robinson and seconded by Bierscorf:

PCOM Motion: For the purposes of planning, the Western Pacific area will be defined as the area within the purview of the West Pacific Panel (as established in the JOIDES Science Advisory Structure terms of reference) extending eastward to 20 miles to the seaward side of the trench complexes.

Vote: 14 for, 0 against, 0 abstain

The following motion was proposed by Robinson and seconded by Hussong:

PCOM Motion: The PCOM sees a minimum of 1 yr of drilling for the Western Pacific out of a 3 yr program in the Pacific basin. Additional time in the region must be justified by developing focussed and concentrated objectives/themes for the region.

Vote: 4 for, 7 against, 2 abstain (1 absent)

Discussion of the motion revealed that the several of the PCOM were against specifying a determinate amount of time for West Pacific drilling until the thematic panels have had their input. It was the consensus of the PCOM that the panels be asked for guidance in establishing operations in the West Pacific and that they report their recommendations at the January PCOM meeting.

JOIDES SCIENCE ADVISORY STRUCTURE

Discussion of long-term drilling plans for the West Pacific revealed concern =mong PCOM members at the effectiveness of the current Panel structure in
eloping scientifically well-balanced programs. Scme concern was also ..pressed at the apparent predaminance of the regional panels. It was agreed tha PCOM should review the Science Advisory Structure at its January 1986 meeting.

PANEL CHAIRMAN APPOINIMENIS

The issue of whether the $\$ 1000$ available for use by the panel chaiman was a sufficient amount to cover operating expenses. It was pointed at this time that a number of U.S. JOIDES institutions were taking overhead expenses (which in some cases reached 40\%) out of this amount. The PCOM expressed its feeling in the following consensus:

PCOM Consensus: The $\$ 1000$ allotment is sufficient to conduct activities that are associated with the panel chairmanships and that JOI,Inc. will attach a contingency to these funds stating that it will only accept billings -from these institutions if the overhead requirement is waived.

It was also the consensus of PCOM that resigning panel chairmen will remain with their panels as continuity for 1 year.

Western Pacific Regional Panel
B. Taylor has been nominated by WPAC and has agreed to serve.PCOM approved the nomination.

Central and Eastern Pacific Regional Panel

D. Rea has been nominated by CEPAC and has agreed to serve. PCOM approved the nomination.

Indian Ocean Panel.
R. Schlich and W. Prell were nominated by IOP and have agreed to serve. PCOM approved R.Schlich as Chaiman.

Atlantic Regional Panel
B. Tucholke and J. Austin were naminated by ARP, but only Austin agreed to serve. The PCOM approved the nomination of J. Austin as Chaimman.

PCOM LIAISON APPOINTMENIS
ARP- T. Shipley added.
CEPAC- T. Shipley added.
IOP- R. Larson in place of J. Honnorez
TECP-S. Levi added.
SOP- H. Beierscorf (switched from CEPAC) .
The PCOM made the following contingencies: Robinson will go to LITHP if Honnorez leaves PCOM and Robinson will leave SSP after the January 1986 meeting.

```
1986 January 20 - 24 La Jolla, California
                    (to include Panel Chaimmen)
            May 19-21 Palisades, N.Y.
        D. Hayes has suggested this new date as an alternate more convient date and the PCOM Chaiman has agreed to this change.
```

August 11-15 Corner Brook, Newfoundland, Canada

ANY OTHER BUSINESS
Databank Review Panel:
It was felt by several PCOM menbers that the response of the PCOM to the Databank Review Panel (as reported in the meeting minutes) was left unclear. In an effort to put forth a definitive statement and to clarify its position, D. Hayes proposed the following motion that was seconded by Kastner:

PCOM Motion: The PCOM agreed in principle with the recamendations of the Review Panel. We further note that the Review Panel Report includes specific recomendations regarding a modest increase to the originally
'oposed ODP Data Bank budget. PCOM has referred this budgetary issue
the JOIDES Site Survey Panel, its designated oversight panel for the vatabank, and requests that the advice of the SSP, regarding any small ODP Data Bank budget adjustments, be transmitted directly to JOI management for appropriate action.

Vote 13 for, 0 against, 1 abstain

Appointment of US SSP member
It was noted by the PCOM Chaiman that this responsibility has been accamplished by USSAC and that Fred Duennebier (Univ. of Hawaii) has been appointed to the Site Survey Panel.

January Meeting Agenda
In addition to receiving reports from Panel Chaimen and including sessions on engineering (with special references to Leg 106), logging and a review of the JOIDES Scientific Advisory Structure it was agreed to include items on riser drilling plans and, at the request of NSF, plans for COSOD-2.

OCEAN DRILLING PROGRAM operations schedule.

1986

REPORT TO EXCOM, BONN SEPT. 25; 1985
' WIRELINE LOGGING CONTRACTOR
BOREHOLE RESEARCE GROUP
IAMONT-DOEERTY GEOLOGICAL OBSERVATORY
Since the Washington meeting, legs 103 and 104 have been completed, and logging operations are dodging icebergs on leg 105. Several interesting scientific findings came out of the logging program completed on leg lo3. Four wells were logged with Schlumberger suites and the Lamont multichannel sonic logging tool. Fole conditions were poor, and bridging was a common problem. The in-pipe logging program is becoming an increasingly important addition to the logging services. Potasium, पranium and Thorium, as well as porosity were recorded through pipe in hole 641C, identifying lithological changes similar to those cored in hole 641 A from changes in Uranium content of the formation. two "basement" fincs were of particular interest on the leg. Serpentinite was logged and cored at the bottom of hole 637, with density of $2.3 \mathrm{~g} / \mathrm{cm}$ and velocity of $3.4 \mathrm{jm} / \mathrm{s}$ recorded. In cont=ast,'basement' at 63 ed was dolomite with density of $2.7 \mathrm{~g} / \mathrm{cm}$ and velocity of $7 \mathrm{~km} / \mathrm{s}$. Excellent seismic stratigraphic ties were obtained from impecance logs at each hole.

Leg 104 logged 335 m of an XPC hole 642 D and 755 m of basalt cored at hole 642玉. The most striking result was the log response of virtually every sonde put down the hole to the layered flow basalts. Cyclicity on a scale of $10-30$ m was produced by the alternating hard flows and weathered rubble of the flow centers and edges. Both major and minor eruptive events can be easily seen on the logs (Eigure 1). This contrasts sharply with the 30-50 meter thick cyciicity recorded from fractures and joints found in the site 504B basaltic dikes. The borehole televiewer was succussfully deployed, but inadequate time was allowed by the co-chiefs for a proper survey of the wellbore. Instead, a repid ascent of the hole was made to look for stress induced wellbore breakouts.

The mysterious basaltic reflector K which was the target of the drilling effort turned out to be a major lithological boundary with a 15 II thick layer of very low K , U, Th, very high electrical resistivity, density of $2.8 \mathrm{~g} / \mathrm{Cm}$, negígible porosity, and fast sonic velocity overlying a zone of very high radioactive content (25 API units versus basaltic norm of <lo): very low resistivity, density (crop from 2.8 to 2.1 g/cm3), low sonic velocity, and a high percentage of hydroxyl minerals. The layers appeay to be unusually tinick flow and rubble zones compared to the other 128 cycles recorded in the log. Major impedance contrasts across these boundaries are obvious, but their thickness makes them strong reflectors to the long wavelength seismic energy attempting to pass through them.

The ship is at sea for leg 105, with the first results just coming in. The pilot hole in Baffin Bay was lost to logging because of proximity to an iceberg. The wireline heave compensatce is in place and ready for use. A field test on the transit leg from Norway to Canada cropped wireline motion to 5 inches in 8 feet of vertical heave recoried at the rig floor. The new Ganma Ray Spect=ometzy Tool is aboard and operational. The Terralog analysis software is aboard and operational. Now we wait for hole.

Executive Summary
Atlantic Regional Panel Meeting
Villefranche-sur-Mer, France, 18-20 September 1985
by Lucien Montadert, ARP Chairman
and Roger Larson, ARP-PCOM Liaison

Leg 107, Tyrrhenian Sea
The ARP recommends the following order of priorities for Leg 107 in the Tyrrhenian Sea:

Site Description
Site 2, Plio.-Pleist. ref. section, re drill DSDP 132, no logging

Estimated Drilling Time Logging
4.0 d
6.0 d
1.5 d sequence near upper Sardinian margin

Site 3a (a7t. 3a', then 4), Post and $10.0 \mathrm{~d} \quad 1.5 \mathrm{~d}$ Syn rift sequences in west Vavilov Basin on oceanic crust

Site 5b, 01dest basal hyloclastic $7.5 \mathrm{~d} \quad 1.5 \mathrm{~d}$ sediments and nature of basement, Central Vavilov Basin (wash PlioPliest. if good section at Site 2)

Site 7a, Age and nature of basement $7.5 \mathrm{~d} \quad 0.0 \mathrm{~d}$ central Marsili Basin, no looging proposed

Designated backup sites are:
Site 5a, Lherzolite(??) ridge, Vavilov; no loging prodosed
Site 6, Tilted block, base of slope, Marsili Basin

Site 8, Base of Marsili Volcano

At both Sites 5b and 7a, ARP supports a scientific rationale calling for penetration of both the oldest observable sedimentary sequences and basement in order to estimate minimum oceanic (?) basement ages in both the Vavilov and Marsili basins.

At Sites Ib (1a) and 3a (3a'/4), ARP recommends penetration to the base of the postulated syn rift sequences discerned on both regional and site-specific MCS profiles.

Leg 108, N.W. Africa
ARP has examined again the Leg 108 proposed sites and their recently revised drilling estimates. Estimated times seem unrealistically short, and all eleven sites may not be achieved. Better times are needed in order to prioritize the sites in an order which will satisfy as many scientific objectives as possible. ARP recommends:

1. All sites be double-cored to maximize resolution and recovery, even if fewer sites can be occupied.
2. Logging not be done at any sites.
3. Better estimates of drilling times be provided by ODP.
4. Sites be occupied in order of priority, rather than in order of geographic proximity, as much as feasibie.
5. Cochiefs should provide a prioritized ranking of all eleven sites to ARP and SOHP.

Leg 110, Barbados
ARP reaffirms its previous position that ODP proceed with Barbados Leg 110, Sites LAF 1-6, regardless of the availability of advanced technology such as wireline packer or drill-in casing. ARP believes that the first priority objective is to penetrate the decollment to oceanic crust, but the value of the Leg as proposed does not hinge on this target. ARP strongly advocates the scientific objectives of Sites LAF 1-6 proposed by MASCLE and MOORE, also by Tectonics Panel and Caribbean Working Group, that embody a partial transect across the Lesser Antilles foreare to investigate the changes in physical properties and deformation rates and mechanisms in the progressive growth of an accretionary prism. ARP recommends immediate review of all proposed sites by Safety Panel and that all HPC cores on Leg 170 be oriented.

Subantarctic Atlantic Leg

The ARP, after reviewing the subantarctic drilling plan submitted by SOHP to JOIDES, and while acknowledging its importance in providing potentially necessary "extra" time for Weddell Sea drilling, recommends that this drilling be considered within the broader perspective of South Atlantic drilling targets.

1. CEPAC is concerned that publications are being delayed and that no firm contingency plan has been developed should there contioue to be an income shortfall.
2. The panel requests that: Before 504 B is ocupied a strong effort be made to double BPC the sediment section This section, which was poorly recovered in early HPC work, would provide a complete carbonate finescale paleoclimatologic and paleoceanographic history of the Cenozoic.

Co-chief recommendations for the 504B leg are: Sinton and Hyndman; Robinson and Langseth or Anderson; Mottl and Kinoshita or Zoback
3. Don Hussong presented the new data collected this spring in the Peru trench The drilling will be all single bit holes and no casing should be required. A total of 60 days of high priority drilling has been defined. We then discussed the Hays proposal for three holes along the Chilean margin We felt that the objectives outlined by Hays are important but are not ready for drilling at this time. The surveys are not complete enough for good site selection. Further, the panel believes that as a one shot attempt at high latitude paleontology, this area may not be the best place, and it is certainly poorly known. Therefore:

We recommend that as much time as possible be devoted to the Peru leg, and if more time is available-it sbould be used to complete the second Peru paleorupelling set of boles we stroogly feel that the Pera leg objectives will be jeopordized if drilling time is reduced.
4. We then continued with our general discussion of the Pacific. Yves Lancelot reviewed the Old Pacific problems. Dave Rea and Paul Johnson reviewed the INPAC results. Dave Scholl reviewed the major topics of the NORPAC workshop held just before our meeting. With this background we then proceeded to list the major problems in the central and eastern Pacific The order is based on simple evaluation of the merit of the science for each theme with each member giving a numerical score from 1 (nigh) to 4 (low) to each problem. The list and rankings are both subject to revision as the themes become more defined. As the total points show, there is as yet no strong groupings.

The panel feels this review is somewhat premature but believe it is a necessary start to illustrate the range and depth of drilling related science in the Pacific We stroogly feel that the time allocated in the first round of drilling is very inadequate we request that PCOM consider the science objectives outlined and find a method to increase the Pacific drilling time.
5. The panel recommends that Dave Rea take on the responsibilities of chaizmanship of CEPAC. We continue to have a shortcoming on our panel with respect to Cenozoic micropaleontology and biostratigraphy. we agein request appointment of someone like Nick Pisias, Joe Morley or Gretta Keller to our panel.

SOUTHERN OCEANS PANEL MEETING Woods Hole，September 19－20； 1985

EXECUTIVE SUMMARY OF MAIN POINIS

SE PACIFIC PROPOSAI（HAYS）

＊SOP considers objectives worthy but should be considered within framework of later South Pacific drilling．Has lower ranking than Weddell Sea and south Atlantic Subantarctic drilling．

WEDDEIL SEA DRIILING
Iogging：
＊Realistic logging times should be considered with arilling estimates．It should then be decided where to place logging efforts in consultation with the co－chiefs．
＊Current schedule by SOP lists only logging for $\mathrm{W}-4$ ．Of the remaining sites，$W-6, W-7$, and $W-8$ could benefit most by logging．
＊SOP wishes to have a member of the logging group present at the next meeting．

Drilling Priorities：

＊Objectives of $\mathrm{W}-10$（Bransfield Strait）were again reaffinmed． But drilling should not jeopardize the three South Orkney sites （W－6；W－7；W－8）．W－10 remains an alternate site to be drilied at beginning or end of leg．
＊W－6 should be moved to Jane Basin．
＊W－4A priority retained．
Other：
＊SOP recoumends that TAMJ contact Navy to provide ice cover information for Weddell Sea．
＊SOP does not believe it necessary to endorse particular ports at this time（i．e．Cape Town；Port Stanley；Punta Arenas，etc．），but requests that PCOM place prime consideration upon ensuring that scientific objectives are met．

SUBANIARCTIC DRIIIING

Site Surveys：

＊SOP feels strongly that pending site surveys for the subantarctic transect be carried out without further delay．

* SOP recognizes that in a "worst case scenario" for weddell Sea drilling, the highest priority during the following subantarctic leg would be in campleting Weddell Sea objectives.
* SOP rankings of subantarctic sites are similar to those of SOHP. Einal rankings will be decided after site surveys are completed.

EAST ANIARCTIC MARGIN-PRYDZ BAY DRIILING

* Excellent Australian MCS lines are now available. Sites K1, K2, and K 3 can easily be located on these dipping reflector sequences. Scientific prospects excellent but mucin drilling required. K4 is problematic because of slumping and requires further attention.

NORTH KERGUETEN DRIIIIING

* The following plan was agreed upon: Drill $\mathrm{KH}-1$ to 900 m into top of reflector II, then move to KH-3 (perhaps select a slightly thinner section than the present site) and do exploratory drilling to about $300-400 \mathrm{~m}$ to top of Il. Attempt re-entry, wash down and continue drilling to basement; KH-4"remains as alternate basement site. KH-5 o.k. as is. SOP likes the site S8B and will keep it as alternate site. S8B requires site survey but has a relatively thin pelagic section and could therefore be surveyed by the RESOLUIION.

SOUTHERN KERGIETEN

* Objectives at this time are to direct and influence the site surveys and ascertain that existing and new data are merged for the final selection of sites. SOP recommends that R. Schlich (France) and J. Falvey (Australia) be strongly encouraged to collaborate on this task. Both of then or their representatives should participate in the next SOP meeting.

OTHER SOUTH INDIAN OCEAN OBJECTIVES

* Melville Fracture Zone. SOP strongly supports drilling in this feature but recomends a thorough SeaBeam survey.

SOUTH ATLANTIC WORKSHOP

* SOP would like to Co-sponsor this workshop. Suggests that it be held following drilling of the Subantarctic leg.
* Co-sponsored by CEPAC and SOP.
* To be held in Gainesville, Florida in April, 1986.

CO-CHIEF NOMINATIONS FROM SOP

* Weddell Sea leg - J. Kennett and D. Fuetterer
* Subantarctic leg - J. LaBrecque and P. Ciesielski

IIAISON

* Better liaison needed between LITHP and SOP.

SUMMARY

IOP has continued to revise its priorities and recomendations-for-a drinling program in the Indian Ocean in response to receipt of new and revised proposals, and in response to the tentative schedule put forth by PCOM in June 1985. Our recomendations are summarized as follows, arranged in what we perceive as the best logistical schedule for a 21 -month program including Kerguelen and Red Sea. In order to hit the optimum weather windows for both northern Arabian Sea and the Kerguelen Plateau area, two 3/4-length legs are proposed to. start the Indian Ocean campaign.

Capetown

May 187	SWIR-Melville Fz: lithosphere, upper mantle ~ 1 mo.
	Fossil Ridge, Mascarene B., basement sampling $\sim \frac{1}{2}$ mo.

\#115
June Mascarene P1.: L-M-C-M hot spot and carbonate dissol. $>\frac{1}{2}$ mo. Davie R: biostrat. \& paleoceanog. < $\frac{1}{2}$ mo.
July Gulf of Aden: hominid site, Neogene package < $\frac{1 / 2}{}$ mo. Djibouti

Ang.
Sept.
oct.
Neogene Package - Oman margin, Owen R., distal Indus Fan Nov.
Mar. \quad Broken R. and sourhern part of Nineryeast R.:

May	
June \quad I-M-C-M(Laccadive-Maldive-Chagos-Mascarene) 27 hot spot trace, paleoceanography, carbonate dissolution	

July	Start Central Indian Basin
Aug.	Finish $\frac{\text { Ninetyeast R, and Central Indian Basin, in- }}{\text { Era plate deformation \& distal Bengal Fan }}$ Colombo
Sept.	

Oct. N.W. Australia: Exmouth Plat. \& Argo Abyssal Plain
Nov. Freemantle or Darwin. Dec. S.E. Australia (Otway Basin) continental

Jan. '89 \quad| margin \& Tasman Rise. |
| :--- |
| Could be done later with SW Pacific work |

1/ First program out for time constraints: full Laccadive-Maldive-Chagos-Mascarene.
2/ Second progran out: S.E. Australia margin.
3/ Project names underlined are explained briefly in Appendix B.

ATTENDEES:

Panel Members
Cochran
Curray
Falvey
Gradstein
Schlich
von Rad
REPORTS:
XCOM and PCOM - Larson

Guests
Larson (PCOM)
Brenner (SSP)
Weissel (TECP)
Kidd (TAMU)

Members Missing
Duncan
Prell
Sclater
Tauxe

ODP is still short of foreign members. It appears unlikely that the U.R. will be able to join. Japan is coming in this year, and E.S.F. and Australia are still negotiating. In order to operate a full program without robbing U.S. science, two new members should be located. Some talks have continued with the U.S.S.R., and preliminary communications have been established with China. Without additional members, some parts of the program and activities will continue to be cut, mainly from the science and operations budgets.

At their June Meeting, PCOM accomplished two significant things: first, establishment of a rather firm 1986 schedule; and second, establishment of a tentative subsequent schedule. Our proposal for the Indian Ocean was a major item of discussion for this subsequent schedule. Unfortunately, the eighteen months previou suggested for Indian Ocean dwindled to sixteen months, with PCOM endorsement of t Atlantic Sub-Antarctic Drilling leg prior to entry into the Indian Ocean, tentatively in about May 1987. Highest priority items to PCOM from our recommendations were Kerguelen, Red Sea, and the Neogene Package. Specific assignments were given to panels for further development of these programs and legs, as follows:

- The mix or selection of Davie Ridge, Southwest Indian Ridge, Somali Basin, and/or Makran, assigned to SOHP, IITHP, TECP, and IOP for refinement and recommendations.
- Red Sea, assigned to Red Sea Working Group.
- Neogene Package, assigned to SOHP for primary responsibility.
- Kerguelen I and II, assigned to IOP, SOP, TECP, LITHP, and SOHP.
- Broken Ridge, Ninetyeast Ridge, and Intraplate Deformation-Bengal Fan, assigned to IOP.
- Argo/Exmouth, assigned to IOP and SOHP.

These assignments were discussed. Some disappointment was expressed that the Neogene Package, conceived and put together by IOP, was assigned to SOHP ior refinement. The SOHP Minutes of July, however, suggested that the responsibility should be given back to IOP, a responsibility which we accept.

PCOM is especially interested in our recommendations and those of the othe: panels for the first leg priorities and recomendations among Davie Ridge, SWIR, Somali Basin, and Makran.

```
hindies of the gestern pacific panel
14 - 16 ADGOST, 1985
UEIVERSITY OF CALIFORNIA, SARTA GRUZ
```

Members Present:

Eli A. Silver
Brian Taylor
Jim Natland SIO
Margaret Leinen URI
Xazu Nakamura
Jim Ingle
Reinhard Hesse
Jacques Recy
Claude Rangin
Hans Schluter
Marcus Langseth

Asahiko Taiza

∞
Audrey Meyer
Absent:
Visitors:

UCSC
EIG
U. Tokyo

Stanford
McG111 0.
ORSTOM
IFP
BGR
LDGO

ORI
TAMD (Rapporteur)
Kagami
(None)

PCOM Liason ODP Liason

Chaif

Lith Liason
TECP Liason

Executive Summary of UPP Meeting in Santa Cruz

 August 14-16, 1985The panel prepared a list of 20 potential drilling legs, based on all the proposals that we havereceiveduptothestart of the meetiag. Each leg is focused on a scientific topic, but many represent amalgamations of several proposals and many sites. Voting was done as follows: Each voting member (ll cotal)had 3$3^{\circ} s, 3-2^{\prime} s$, and $3-1^{\prime}$ s to distribute among the 20 potential legs. Mexbers were not allowed to vote on proposals for which they were co-authors. To help alleviate the situation in which several wembers were excluded from voting on a given proposal, we divided the total votefromeachleg byllminus thenumber of excluded voters for that leg. The results, presented below, fairly represents the feelings of the panelas a whole on thedriling priorities in the western Pacific region.

draft minutes of the
 SEDIMENTS AND OCEAN HISTORY PANEL
 (meeting at Lamont-Doherty Geological
 Observatory, July 25-26, 1985)

PRESENT

M. Arthur
P... Meyers
Y. Lancelot
M. Sarnthein
E. Suess
W. ㅍay
wi. Ruddiman
J. Kematt (SOP)
S. Gar=ner (PCOM Liaiscn)
G. Brass (NSF)
A. Palme: (ODP)
I. SOHP endorses 2 legs for southern ocean in Indian Ocean Program:

1) Pryda Bay and Southern Rerguelan
(Sites: 4 in Prydz Bay \& R7, R12, R5, R10, K11)
2) Northern Kerguelan
(Sites: KHP-1, K싸-3, KTP-5A, 58B)
 be setained as backup sites, but that they have lower priority than Weddell sea program.
b) SOHP reiterates that $W 7$ (or W8), W6, and W1O be completed at end of Weddell Sea program (as previously proposed), but that W1O (Brainsfield Straits) be considered as first site if any ice problems.
III. SOHP recomends that a deep hole (ca. 2500 m) be drilled on or near anomaly M25 in the Somali Basin (Eor reasons derailed in minutes) as out favorite "Chinese Menu" alternative. More specific location to follow.
IV. Deep Stratigraphic Tests.proposal will be revised and submitsed as formal proposal. Emphase 6 deep hoies: 1) Somali Basia; 2) ExmourhArgo; 3) Bering Sea; 4) Venezuelan Basin; 5) Eole 603B; 6) Moroccan 3asin
จ. Man, Milankovitci, Mountains, Monsoon proposal: a) 3 Sites in upwelling transect to Ducin Ricge; b) i site on Somali basin margin; c) 1 to 2 sites on distal Indus Cone. (follows basic plan of Prell and IOP)
VI. See other comments within on Red Sea, 90° E-Ridige, and possible Chagos/ Laccadive/Mascarene transect.
VII. Next meeting Jan. 6,7 in La Jolla.

SUMMARY

1. Considerable concern over the availability of only two bare rock guidebases that causes major review of Atlantic and Pacific priorities. Recommend that two guidebases be used in the Atlantic only if needed to get one good hole. If a guidebase is available for 111 , either left over from 106-109 or because more funds could be found, then 111 should be EPR drilling. 504 B and EPR have equal science priority but there is a need to start tackling the technical problems associated with EPR as soon as possible.
2. Excellent MARK site survey work defines ideal drill sites for 106 and 109. Rane Fracture Zone drilling is back-up for 106 but recomend that final decisions on 109 back-ups (if needed) be delayed to January IITHP meeting before PCOM but aiter 106.
3. EPR drilling site should have three characteristics: seismically defined magma chamber, full photo coverage, and active hydrothermal activity but locate first site in downflow zone. Consensus was 'French' $13^{\circ} \mathrm{N}$ area probably best meets these requirements at this time.
4. Unique opportunity exists for sampling upper mantle stratigraphy by drilling SW Indian Ridge fracture zones. This proposal combines aspects of both upper mantle geochemistry and fracture zone tectonics, both high priority COSOD objectives. Full panel support for this drilling. Recommend three basement penetrations in Kerguelen and strong support for $90-E$ ridge program but still would like strengthened proposal and other relevant principals involved in the deliberations.

September 30 - October 2, 1985
Ocean Research Institute, Tokyo, Japan

1) RECOMMENDATIONS: FOR LEG 110 DRILIING ON BARBADOS RIDGE

We endorse the drilling plan submitted by Moore in a memo dated May 17, 1985. Specifically, most of the drilling time should be expended at LAF-1 to: a) drill through the decollement; b) measure in situ physical properties using a drill-string packer; and c) set drill-in casing if necessary. After LAF-1, sites LAF-2 and 3 should be drilled upslope to complete the transect begun on Leg 78A. We do not support drilling completely zew sites, such as LAF-5, 6, or 7 in the Caribbean Working Group proposal, on this leg.
2) IN SITU FLUID PRESSURE MEASUREMENTS

In view of the importance of decumenting in situ fluid pressures and fluid properties at convergent margins, we recommend:
A) Immediately modifying the Barnes-Uyeda temperature probe so it can be used to measure in situ fluid pressures in the bottom of holes to be drilled on Leg 110;
B) Proceeding with the engineering required to modify the TAM drill-string packer so it can be included in a rotating ("hole-making") drill string, preferably before Leg 110; and
C) Developing: a wire-line packer as soon as is technologically possible.

3) INDIAN OCEAN DRILIING

A) From the Chinese menu of possible legs for May-June 1987; we recommend drilling the Southwest Indian Ridge fracture zone (SWIRFZ). As is clear from our earlier'ranking, we think both SWIRFZ and Makran address thematic problems of global significance; our rationale is clearly explained in the minutes of our March 1985 meeting. Forced to choose between them, we now favor SWIRF2. On balance, the panel (by a $5-4$ vote) feels that new information concerning fracture-zone tectonics and structure is more important at this stage than additional drilling in an accretionary prism, especially because drilling is scheduled on Barbados Ridge and off Peru. Looking down the road (or strait), we plan to evaluate other prisms and trench slopes in the Pacific Ocean.
Regarding SWIRFZ, we insist on using at least 2 holes to study iransverse variations in the fracture zone instead of placing all holes along the trend of the zone as proposed. Finally, the sites proposed for other items on the menu - Davie Ridge and Somali Basin do not merit drilling from a tectonic standpoint.
B) Kerguelen: Basement must be sampled on the north, central, and southern parts of the plateau. Of the existing proposed sites, we give highest priority to Kup-3, as a re-entry hole if necessary.
C) Drilling into "basement" beneath the dipping reflectors off the Caird Coast of Antarctica is of high priority because of the non-conclusive results of Leg 104 concerning seismically equivalent rocks.
4) WESTERN PACIFIC

From a thematic standpoint, drilling in the Westem Pacific offers an outstanding opportunity to address these global tectonic problems:
A) The evolution and constitution of arcs and fore-arc basement; the process of rifting in and near arcs; vertical tectonics in arcs
B) The origin and evolution of back-arc basins, including nascent and more highly evolved examples
C) The tectonics of collisions in the broad sense: The arrival of seamounts, aseismic ridges, plateaus, and continental plates and microplates at active convergent margins.
We plan to devise a drilling program aimed at these topics at our next meeting.

Report of the Information Handling Panei meeting, College Station, Texas, September 9-11, 1985

Summary

1. Publications policy. The IHP restated its firm commitment to a strong ODP publication program, and concluded that the two-part program adopted last year by PCOM still best meets the needs of the scientific community. To deal with the cursent financial shorifall the Panel endorses the conclusions and recomendations of the PCOM Publications Review Subcommittee. We recommend that (1) post-cruise conferences proceed on schedule; (2) all necessary material for part A volumes be ready at the post-cruise conferences; (3) as a temporary expedient basic, cheaply-printed Initial Core Descriptions be produced Eor the early legs; (4) as Part A volumes can be completed, they are shelved to await funding for publication; (5) Part B. manuscifts be scheduled as originally planned, and shelved when received to await funding for editing and printing. The panel concluded that ODP must maintain responsibility for publicaston of "Part B " peer-reviened scientific reports by some means, and our proposal for a Part b volume seems ultimately to, serve best the scienetfic communty at a cost no higher than alternative proposals.

The IHP feels that the proposed "steady state" publications costs of \$2.1 million are reasonable and in line with percentage publication costs of other large science programs. We recommend that publications be given a very bigh prionity when and if additional funding becomes available, to facilitate earliest possible publication of Pa=t A volumes. If anticipated improvement in funding does not occur, IHP asks to meet on an emergency basis to evaluate further options.

In our assessment, if the results of the ODP are not published in an adequate and coherent form, the Project loses its only universally visible product.
2. Logging data. IHP recommends thai the routine wireline logging results be published, as edited and selected by the logging operator in consultation with the science operator, in Part A at the scale of the barrel sheets. If financial or production constraints preclude this, representative logs should be published and the presense of all logging data indicated on the core descriptions. Non-routine downhole measurements should appear as individual scientific experiments in Part 3.
3. Other subjects. The following mattess were also considered at the IfP meeting, and are covered in the attached report.
(a) Logging data distribution policy
(b) Appoinement of a liaison to inp Erom the logging openator.
(e) Sample curation policy, especially regarding requests for whole round core samples ₹or destructive shipboard analysis.
(d) Status of ODP data bases and data aquisi:ion
(e) Status of Micropaleontology Reference Canters
(f) Status of ODP computer serrices
(8) Need Zor represeniative• sampling for consistent corzelation.
of various measurements.
(h) Relation of ODP Data Bank at LDGO to other data banks and services.
(I) Request for a Japanese representative on IHP.

REPORT OF TII: SUBCOMMITTEE FOR REVIEW OF ODP PUBLICATIONS

1. INTRODUCTION

Constraints on ibe FY86 ODP budger prompied EXCOM ro re-examine, among other items, the ODP publications budget. That budger is projecied at 5864 K for FY86 and at 52.0 io 52.5 M steady-state. EXCOM direcied PCOM to examine the problem and PCOM in turn appointed a subcomitiee for this purpose. Issues to be addressed by the subcomititef grow mainly from the need to cut costs, but they exiend to re-examination of the eatire philosophy behind the publicaidor of past and projected ocean drilling results.
(a) One option raised by EXCOM was elimination of the blue book se:ies (presumably meaning its equivalent in ODP) and its replacement wish another form in which data could be presented, perbaps a collected reprift series or the establishmeat of a data center at the ODP Databank.
(b) Reservations were ezpressed about the two part format. paritcularly pari B (peer reviewed papers discussing the resulits of a leg).
(c) Publication of logging data in Payt A was expected io be very expensive and should be re-examined. EXCOMfelt that different ways of making these data available should be explored.
(d) Advances in information technology should be taken into account.
(e) The need of non-Li.S. members to have a tangible outpur from ODP also must be considered.

The subcomitites, consistigg of S. Gariner (PCOM), D. Appleman (IHP), A. Mayer (JOIDES), R. Meyijll (ODP), and H. Spall (USGS Resion) (for J. Holoviak. AGU) met in Washingion on july 29. Also present were W. Rose (ODP) and G. Brass (NSF).

2. BACKGROUND

(a)- The Review Group started from the basis of ine curfently agreed publica:ions policy as recommended by the liformation Handlizg Pazel (IHP) and aceepted by PCOM. The PCOM (Septembe: 1984) eecommeded that an lnizial Repori (Pari A) should be published about ore year posi-cruise. This would include a simple introduciioz, the site chapiess with the ICD
equivalents and a sbort summary. The full scientific report (Part B) should appear about three years post-ciuise.
(b) IHP in making fecommendations to PCOM had dyamy up a list of atiributes which were desirable for ODP publications designed to serve the aetds of the shipboard scientific parties and the co-chief scientists, the outside scienific comminity of users of the program resulis, and the program operators and managers. Highest priority went to leg coherence (keeping all the results of a given leg together); timeliness of publications; and editorial scope (perer review stafdards) and flezibility.
(c) At izs Norfolk (April 1985) meeting, PCOM considered that the data from the standard logging tools should be printed as a logging sumary in Part A with interpretarions and analyses appearingin Pari B. This issue bas been feferied to IHP and to the Downhole Measurements Panel (DMP). The latter reacted eathusiastically co this proposal.

3. CONSTRAINTS

(a) R. Merfill gave a presentation on the curferi ODP publications policy and a cosi comparison betweti DSDP publications and those projecied by ODP TAMU is order to met the agreed policy. This budgetary informailoz is given in Angezes $1-8$ of this report.
(b) The original estimate for FY86 from the Publications Group was for 5843 K , increasing in later years io a marimum "steady-state" of appioximately 52.2 Mannually in 1986 dollass. This would include prigifig and disiribution cosis which were not included within the DSDP publications costs. Following revisions of the ODP budget consequent upon funding shortfalls, the FY86 figure has been reduced to si88 K, which may be further reduced by about 10% to accommodate the recomerdations of the EXCOM Budget Subcomittee.

4. DISCUSSION

(a) Some concern had been expressed by ExCOM over the 52 M S2.5 M piojected "steady-state" budget for publications, which represemis approximarely 8% of the curient angual program cosis. The Review Gioup compared this with USGS activities: thesefigures are comparable andentirely Eeasonablefor a program of ibis magnitude. It should be noted that revised estimates fiom TAMU put rbe publications "steady-staie"cost ar 52.14Min 1986 dollars.

It should be recognized ihat even this revisedestimate cannot be iaken as castinconcrete. litis impossible to judge whethez doubling of ihe numbeg of shipboard seientists
will sesult in a doubling of scientific contributions. $i t$ is reasonable to expect some inciease. It is also unclear ro What extent the per review of all of these contsiburions plus a poljcy of making all contributions "dean" will materially reduce costs, although such a reduciaon will almost ceriaindy occur.
(b) The policy for publications with Parts A and B of ODP Proceediggs was considered at some leggrh. Part A (consisting of sire chapress. core descriptions, black-and-white core phoiographs, and selected underway geophysics and loging data) is considered essential, and should appear approzimately $12-14$ months post-ciuise to coincide with the redease of core material and other data for use by the general scientific commaity.
(e) The DSDP Initial Reports aye considered "gray" literature by some members of the cominity and there is concern that Pari B will be similarly consideged and at considerable cosi of publication. The conclusion of the subcomitiee was that pari B will got be stigmatized by ihat odious label provided that the papers contaiged in it are fully peer-reviewed, that realistic deadifies for matuscifit submission are achered to, and that these papers address the interpretation of gesults. Papers which consisi dargely of data presertations withour interpretarions create difficulides if igeluded, despite their being essential to ODP's overall mission. The subcomimitee thought that such data might be published on microfiche and bound in a pocket within the book, rather than be published as part of the teat of Part B.

Much of the discussion during the meering pertained directly or indirectly to the issue raised above. The question may be rephrased as follows: "ls it appropiatefor ODP to be responsible for publication of those resulis which are to be iacluded in Pari B, i.e., the fully peer-reviewed contributions of shipboard and other seientists pertaining ro a particular leg?" Points raised which were relevant ro this question ate as follows:
(i) Jourials in the open litegature probably cannor handle che sheer volume of manuscifipis produced by ODP science in the course of a year (projected at 6000 p:inted pages anaually).
(ii) Some imporiant contributions could zor find space in appropiaate publicarion media because they would make ditile sense if presented out of contert with other matesial zelated to the scientific problems addressect by the relevant legs.
(iii) The dack of a desigated vehicle (and schedule) fo: publication of ODP sesulis probably would eatue many
scientists to dose interest and motivation for timely compleiton of manuscifis, with consequent iftevocable loss of information.
(iv) Coniributions resulitigg from any single leg would be widely scartered in various journals and be published at various times in various languages: there would be a complete loss of quality conitol. Under these cifcums rances, the scope and complexion of the final product of 10 years of the ODP would become unprediciable and uncontrollable and, if ultimately judged to be faulty, would be irfeparable.
(v) The contributions in Part B consiitute the only public record of the scientific thought invested in the planging, execuifor and analysis of each deg by the JOIDES commaity and by the participaring scientists. They fecord the interactions of the interatioaad scientific commaity and the synergisticeffects of combined efforis to define, atiack and resolve scientific pioblems. Jo theif present form, they are an essenial part of the rangible product of ibe interational scientific comunity's favestmentin ODP. Loss of the Pari B publication format, and the resultant dissemination of these papers throughout the open ditegaruse, could severely impact perceptions of the quality of the ODP product io the eyes of scientists outside of the JOIDES commaity.
(vi) Elimigation of Part B would nor gecessarily result in a significant cost savings. because page charges and
 equivalent zumber cf pages to be published in the outside literature would still be incurged by the funding agencies.
(d) There was discussion about the mayimum leagit of papers ro be permitited in Pari B. Papers should be as brief as necessary, but the subcomitiee did zot think it appropiate to suggesi.edizorial policy.
(e) ODP/TAMU is reviewing new advances in paper fechnology for Pari A and Part B pioduction. Acid-free, lightweight paper which permits high quality plate seproducition is now available which would deciease the overall cost of production and also cieate savings in distribution costs.
(f) The subcomitite is satisfied that ODP/TAMU is takigg advantage of gew techaologies in publishing to streamine and reduce the costs of procuction. These include auromared manuscript iracking. optical character reading. and electronic ifzasiation of foreiga (to the ODP/TAMU compties system) disk formats, which wijlicase tine electrofic capture of incoming mazuscidpis. electionic manuscifptiransfer to
reduce typeseting costs, and ship-to-shore word processing in order to accelerate the producifon schedule and to make on-line revisions io Parit A mancipis possible.

New machines are now being markered which facilitate elecironic paste-up and page composition (including graphics). These are the WYSIWYG ("what you see is what you get") machines. ODP/TAMU bas betn asked to assess ihis techoology which, if applicable, could further reduce the future staffing requirements of the Publications Group. At this time, bowever, this iechaology is expensive and relatively untested. It may be a useful development in the not-too-distant furure.
(g) The subcommitiee considered the subjeci of madvances in information technology.n litis not entifelycleag what is meant by this phrase, although some present inierpieted the phrase io suggest, e.g., dissemination of ODP resulis on floppy disks. While the rechology for this piocedure may exist. the complexity and cost of applying this techoology are likely to prectude its use in the imediate futuse.
(h) The subcomitite was satisfied with the level of staffing necessary io produce Pari A, which consists of two copy edirois (of five proposed). one produciion editor (of ihree), oar illustraior and one draftsperson. This siaff would also be engaged in the production of science ciuise prospecti, preliminary reports, techajcal reporis, hoje sumaties, and suppori of PR activities.

5. CONCLUSIONS AND RECOMENDATIONS

(a) It is clear that there are insufficient funds available in the FY86 Publications budget to produce the Pari A volumes of the Paocetdings and the ancillary publications which age scheduled to appear dusing FY86.
(b) The subcommitiee considers it to be of prime imporiance to producesome form of ODP publication during FY86, without prejudicing the approved publications policy. Curient staffing of publications is frozenfor FY86at the publicarions supervisor; cro illusitarors, one draftspeison (for the bariel shetis), and one bole sumary coordinator. Wi:h this staffigg and funding for: FY86, the subcomitate tecomends the pioduciaion, printing, and distitbuition of at deast two (2) DSDP-siyle lnitial Cose Descriptions. These would be considered preliminary versions of equivaleat part A's, which would be published in FY87. Legs 101 and 103 are appropriate for ICD produciion, in that cores were recovered, and it mat be possible to produce some equivalent doctuentation for Leg 102 (the loggigg leg). It is also expected that the Publications Group will cariy out some editorial woik on Part A's. in prepasationfor FY's printing.
although the lack of edito:ial staff probably will dimit the Group's accomplishments in this direction. Additionally, the Group is asked to continue to produce the ancillary publications referred to in Section viii above.
(c) In an effort to reduce cosis, the Publications Group should investigate the possibility of using freelance editorial staff. $\mathrm{I}_{\mathrm{t}} \mathrm{i}$ s understood that the Publicarions Group will seck out the mosi economical bids for typestiting. priating and distribution without compromising the quality of the ODP publications.
(d) The Manageg of Science Services should hold off on proceeding with RFP's for typeserting, printing and binding, and distribution of Parts A and B until 'rhe budget for FY87 cad be projected with reasoabble accuracy.
(e) Overall staffing of the Publications Group aeted further review prior to formulation of the FY87 budgei in order to bifig staffing in line with the tasks gequifed of the group.
(f) It is afticipated that the phase-down of DSDP durizg FY87 will assist the ODP budger for that geat. The subcomitiee places bigh priority on restoring funds for rapid publicarion of Pari A's for FY86 and FY86 ciuises.
(g) The subcomitiee considered that, apart from specific logging legs such as Leg 102, Part A of the Procetings should contain only a bifef guide to ihe logging dara and ro specialist downole experimeris, and that it shouldadvise as to bow users may aceess data in L-DGO and TAMC. IHP should be asked to give further consideration as to how ihis may be done.

Printing, Binding \& Distribution Costs Exclusive of Poslage

Per Page Printing, Binding \& Distribution Costs

Contents of ODP Proceedings

-- Initial Report --
-- Final Report --

* Introduction \& Explanatory Notes
* Site Chapters
* Core Barrel Sheets
* B\&W Core Photographs
* Selected Underway Geophysical Data
* Frontispiece
* Introduction \& Explanatory Notes
* Peer-reviewed specialty papers
* Acknowledgments
* Back Pocket Figures
* Selected Logging Data
* Back Pocket Figures

ODP Cruise-related Publications

1. Cruise Prospectus

3 months precruise
2. Preliminary Report

1 month postcruise
3. Hole Summary

1 month postcruise
4. ODP Proceedings: Initial Report

12 months postcruise
5. ODP Proceedings: Final Report 40 months postcruise

ODP Peer-Reviewed Publication Process

- Manuscript Review, Revision and Acceptance -- Staff Sclentist and Co-chiafs
- ODP Revisions for Consistency \& Grammar
-- Staff Copy Editor
- Typesetting, lllustrating, Proofreading
-- ODP Art and Production, Typesetting subcontractor
- Co-chief Review \& Corrections
-- Co-chiafs, Staff Copy Editor \& Production Editor
- Printing, Binding \& Distribution
-- Printing \& Binding Subcontractors

Streamlined ODP Production Procedures

Automated manuscript tracking will prompt laggards and supply management reports

Ship-to-Shore word processing will make on-line editorial revisions to Part A mss possible

Optical character reading/foreign disk translation will ease electronic capture of incoming mss

Electronic ms transfer will reduce typesetting costs

September 25, 1985

Professor Roger Larson, Chairman
Joides Planaing Committee
Graduate School of Oceanography
University of Rhode Island
Narragansett, RI 02882-1197
Deay Roger:
I am writing regarding the Packers for lieg 110 of $0 D P:$
As youknow theonly packerpresentigavailablefor leg llo is Keir Becker's double element Tam packer which requires a pipe trip and re-entry for utilization. Recently Keir has informed me that his existing Tam Packer can be modified to allow rotation and therefore placement in the drill string during coring operations. This option would allow pressure/permeability testing immediately after penetrating faults during drilling, providing the opportunity for measurements before time-dependent hole collapse occurs and obviating the need for refotry in some cases. Furthermore, this modified packer is the only tool that could be coupled with the existing drilling casing and potentially measure fluid pressures and permeabilities below the decollement.

The modified Tam Packer has enormous potential for saving both ship time and the cost of drilling hardware (re-entry cones, casing strings). Support of the modification of this tool should be given the highest priority in funding. Since the development of a re-entry compatible drilling casing is not feasible by leg 110, perhaps some of the funds targeted for this expensive item can be diverted to the Tam Packer modification.

Thank you for gour consíderation.

ccR. Becker
R. Von Hertzen

EARTH SCIENCES
APPLIED SCIENCES BUILDING

SANTA CRUZ. CALIFORNLA 95064

September 25, 1985

Professor Roger Larson, Chairman Joides Planning Committee Graduate School of Oceanography Dniversity of Rhode Island Naryagansett, EI 02882-1197

Dear Roger:

I am writing regarding the planning for Leg llo of ODP. Specifically $\begin{aligned} & \text { would like to address the feasibility of }\end{aligned}$ penetrating the decollement between offscraped and underthrust material as well as fall-back options should this objective not be achieved.

Drilling Schemes to Penetrate the Decollement

Glenn Foss of tamd has informed me that they cannot develop drilling casing that is compatible with a re-entry cone and extended casing string. However, they plan to improve the existing, non-re-enterable, driliing casing to more uniformly apply torque and hopefully allow its release from the drill string after emplacement. Secondiy, they are preparing a long standard casing string that perhaps could span the decollement. Foss is optimistic that this casing system can be emplaced by using aburdant mud to circulate carings out of the hole while the casing is run. If succesiful, both coring and existing Iam packer experiments could occur below the decollement. If not, utilization of the modified drilling casing would permit coring and logging below the decollement and packer experiments if the Tam packer is modified (see Reir Becker's letter). Success with either of the above two schemes will allow completion of virtually all leg objectives. I believe that the foregoing options provide an adequate range of approaches to the admittedy difficult problem of penetration of the decollement. I personaliy believe the chances of success are high.

Alterate Drilling Plan: Scientific. Justification

If complete penetration of the decollement is imposible, then operations will be limited to coring, re-entry, logging, and packer measurements above and withia the upper part of the decollement. The critical question is whether this "fall-back" position constitutes a viable leg.

Structural and hydrogeologic questions associated with penetrating the offscraped material above the decollement include: 1) is there significant intergranular fluid flow? 2) is therefluid flow along the faults that splay off the decollement? 3) what is the magnitude of fluidflowinthedecollement (at least its upper portion)? Since the material below the decollement is undeformed and apparenty finégrained (limiting fluid flow the attainment of the above objectives probabiy describe 70% of the hydrologic regime of this accretionary prism. While this would produce an admittedy incomplete analysis of the structure and hydrogeology of this system, it would be virtually the first thorough investigation of fluid flow in this environment of massive tectonic consolidation. Although, not discrediting results from previous Legs at active margins (including 78 A !, see attached reprint), they have been principally structurally oriented, and have produced no pressure, pore water, nor temperature data adequate for modeling of fluid transport. Moreover, recent discoveries of unique biological communities at subduction vents provides additional impetus for hydrologic studies of. accretionary prisms. The multidisciplinary analysis of the structure and hydrogeology of the Barbados prism will break new ground in studies of accretionary tectonics and provide a basis for conceiving further, more sophisticated investigations.

Time Requirements of Alternate Drilling Plan

Given the good possibility of penetrating the decollement at LAF 1 , Leg 110 should begin with this objective and only proceed to the alterate drilling plan after thorough testing of all approaches. Total time estimates are as follows:

Laf 1 Penetration of Decollement
21 days
15 days
11 days
13 days
7 days

$$
\begin{array}{lc}
\text { Professor Roger Larson } & \text { Page } 3 \\
\text { September } 25,1985 &
\end{array}
$$

Timeon LAF 1 is that required totyallapproaches to penetration. Successful penetration might involve more time to core a test sediment below the decollement. Estimates for all Sites include continuous coring, full log suites, televiewer runs, and packer experiments. Clearly, a credible attempt at LAF 1 plus complefion of the upslope transect will more than utilize a normaltwo monthleg.

I hope theaborematerial is adequatetoallow PCOM to evaluate the viability of leg 110 with or without complete peretration of the decollement. For your information rive also enclosed a copy of a previous, more detailed drililing plan. If you have questions please call me at 408-429-2574 (429-2504, leave mesaage; 426-6245, home).

Sincerely,

YORTEERY BARBADOS FORSARC TRAESECT:
SIBDCIDRAL AED HYDROGZOLOGICAI PROCESSES

BACXGZOUSD

The дortieza Barbados foreare transect is designed to examine stavefural and bydrogeologic processes in an active
 completely thyougi the toe of the prism, including oミfsceaped sediment, undezifigg undezthrust sediment, and the active decoliement sepazariag these dizfering styuctural regimes. Enplacizg a ze-entyy cone and casing stinig to the decolilement here vould provide the basis for long-tezm measuzemerts of tilt and fiuid chazactezistics in this emvi=oament. To eraluate lateral vatiatious in fluid propercies and structural features a sefies of additional sites ayeplangedupto tokm lamdwazdof the deformatior Ezont.

Operating sime estimates vere dezived uith the assistance of Glena Foss and Stan Sezocki. at ODP. Ihe time requized for ctansit and to accomplisi all objectives exceeds the normal cruise length by about 50 percent. A normal cinise should completethefitst prioritysite at thetoeplusat leastore ofher hole; vith luck severai of the upslope boles could also be d=illed.

SIFE OBJECTIVES ABD OPERATIOES

The proposed sites for the zortheri Barbados forearc transect are listed below in order of priority.

IAFI: Base of Slope reat Site 54l, Threermfzom Deformation Front

Specific objectives: Completely peretrasefromimbricately thyusted offsceaped sediment through active (azd probably ovejpressured decollement) to underthyust stantified sequence, Einally to oceanic cyust. Detemmine sequence of structu=al features includigg biostratigzaplic definition of Eaults, use televiever to image structural Eeasures downhole. At selected styucturally defiaed localities measure geocecinical pzopezties and Eluid pressure, composifion, temperature and Elow fate.

Establish cased bole wifha re-entyyconethat could serve as a permanent observatory for down-hole monitoring of subduction zore.

Operations: achievemert oE objectives will requize two re-eaty cones and setting of casing, both standard and drill-in variety.

A-Zole: Penetrate about 500 m to decollement, setring fe-enery cone, and casing as aecessayy to unstable zone in decollement. Measure fluid pressure and composifions associated withfaules in offsceaped sequerce and decollemert as base of offsciaped section. Complinene dyilling vith logging, televiever runs, and packer and georectrical experiments. - 17.5 days

B-EOIe: Set re-enty cone, drill and case as necessayy co decollement. Span unstable decollement zone with long section o difil-in casing. Focus logging, televiewer ruas, pacisezand geotechaical experiments in stratified sequence belov decollement.

18 days
Note: It is possiblethat the base of the A-holie vould =emain stable long enough to contiaue through the decollement vita drill-in casing and therefore save 8 days necessajy to set another re-entry cone and to case to che decollement. Therefore the total tiae co complete all objectives could =afgef=ow 25.5 to 35.5 days.

LAF 2: Bight Kim Upslope from Deformation Pront

Specific objectives: Investigate lateral variations in structural features, piysical properties, and pressures, composition, and temperatures of fluids in offsciaped material and in decollement zore.

Operations: Single hole desigred to peretrate 850 m to decollenent using easing as necessary and re-entry cone (required for curyent packer). Continuous coring viti complete program of logs, televiever ruas, and packer and geotechaical experiments at selected localifies.

IAF 3: Tvenfy-Three Ka Upslope Exom Deformation Ftont
Specific Objectives: Penetzate landuasd dipping feflectors (fault?) ar top of lover slope. Establish arcwazd zeferefce poine for variations in structural style, fluid properties, and temperature. Test for active fluid movement alorg faules well arcwasd of deformation f=onc.

Operations: Single hole desizaed to peretate 500ato promineze series of lazduaze dipping. geflectors. Be-entyy cone zequized to use packe: Full suife of logs planned plus boteiole televiever and geotechaical expezimerts.

11 days

LAF 3A: Fifteen K_{m} Opslope from Deformation Pront
Specific objectives: Penetrase lamdayd dipping refleceors in order to establish stzuctuzal style, fluid pressure, temperature and compositior. Test for active fluid movemenc along landward dippiag feflecfors (fault?). LdF 3d is designed to complete transect ama pforide contzol on lateral giadienes of fluid peoperties and structural style should LAF 2 ard 3 also be dzilled.

Operations: Single hole desigaed to pezerrate 600 m to layduasd dippiag reflectors. Re-encyy core requized to use packer iz this environaers. Eull suite of logs planad plus bozehole televiewez azi geosechaical experiments.

TASOLAR SUEMARY

Sice	Hater Depth (metera)	Peretration (metess)	$\begin{gathered} \text { Iime Requized } \\ (d a y s) \end{gathered}$	Commerts
LAP1	5025	860	25.5-35.5	Tvo holes
LAF2	4800	850	18	
LAF3	4275	500	11	
LAF3A	4650	600	13	
		.	67.5-77.5	
Estimated Iransit 7				
		Total	74.5-84.5	

Fote: 111 aites require re-entry cones, and bave ignificant associated experimental programi.

Barbado's North

DIVSION OF MARINE GEOLOGY AND GEOPHYSICS
Dorothy H. and Lewis Rosenstiel
School of Marine and Almospheric Science 4000 Rickenbocker Couseway (305) 361-4663

Dr. Roger Larson (from K. Becker)
Chairman, JOIDES Planning Committee
Graduate School of Oceanography
University of Rhode Island
Narragansett, RI 02882-1197
Dear Roger,
After our September 4 and 5 discussions regarding packer use on leg 110, and given the recent Lithosphere Panel recomendation regarding Leg 111, I decided I'd better write you before the October PCOM meeting. I do so in my roles as (1) principal investigator of the NSF grant covering operations of the drill-string packer, and (2) main author of the proposal to return to 504 B and Lithosphere Panel nomination to be co-chief scientist of Leg 111. I'll make my comments as brief as possible; if you need clarification, please call me at 305-361-4661 or 361-2352 (but I'll be gone to Tectonics Panel 9/27-10/6).

Leg
110 packer use
It became apparent at the ODP Engineering Workshop that the Barbados packer work would be much easier if the TAM packer had a routine rotational capability. I enquired of the manufacturer whether the drill-string packer could be modified to allow rotation, and he replied positively, with the following qualifications: The packer would have to mounted above the BHA, at the bottom of the drill pipe, so that the packer be kept out of compression, and it would have to be configured as a single-element (non-straddie) packer. The cost of such a modification would be on the order of $\$ 20-40 \mathrm{~K}$, which I do not have in my grant.

I feel that such a modification would be useful for general operational and safety considerations, as it would allow reentry of existing holes with the packer above a clean-out BHA, and it would in some cases negate the necessity for separate pipe trips for packer tests. If PCOM feels that this modification should be made for Leg 110, a strong recommendation to that effect would aid me in trying to obtain a supplement to my grant. Please note that this discussion of a possible modification is based only on a single phone call to the manufacturer; we should have a better idea of the feasability of this modification after I ship the packer back to the factory in early October to correct the minor design flaws that prevented packer success on Leg 102.

